Suppr超能文献

多项式动力系统的极大凝聚。

Maximal aggregation of polynomial dynamical systems.

机构信息

Microsoft Research, Cambridge CB1 2FB, United Kingdom.

Department of Computing, University of Oxford, Oxford OX1 3QD, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10029-10034. doi: 10.1073/pnas.1702697114. Epub 2017 Sep 6.

Abstract

Ordinary differential equations (ODEs) with polynomial derivatives are a fundamental tool for understanding the dynamics of systems across many branches of science, but our ability to gain mechanistic insight and effectively conduct numerical evaluations is critically hindered when dealing with large models. Here we propose an aggregation technique that rests on two notions of equivalence relating ODE variables whenever they have the same solution (backward criterion) or if a self-consistent system can be written for describing the evolution of sums of variables in the same equivalence class (forward criterion). A key feature of our proposal is to encode a polynomial ODE system into a finitary structure akin to a formal chemical reaction network. This enables the development of a discrete algorithm to efficiently compute the largest equivalence, building on approaches rooted in computer science to minimize basic models of computation through iterative partition refinements. The physical interpretability of the aggregation is shown on polynomial ODE systems for biochemical reaction networks, gene regulatory networks, and evolutionary game theory.

摘要

常微分方程 (ODE) 与多项式导数是理解许多科学分支中系统动力学的基本工具,但当处理大型模型时,我们获得机制洞察力和有效进行数值评估的能力受到严重阻碍。在这里,我们提出了一种聚合技术,该技术基于两种等价性概念,即当 ODE 变量具有相同解时(后向准则)或可以为描述同一等价类中变量和的演化编写自洽系统时(前向准则)。我们的建议的一个关键特点是将多项式 ODE 系统编码为类似于形式化学反网络的有限结构。这使我们能够开发一种离散算法来有效地计算最大等价类,该算法基于计算机科学的方法,通过迭代分区细化来最小化基本计算模型。聚合的物理可解释性在生化反应网络、基因调控网络和进化博弈论的多项式 ODE 系统上得到了展示。

相似文献

1
Maximal aggregation of polynomial dynamical systems.多项式动力系统的极大凝聚。
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10029-10034. doi: 10.1073/pnas.1702697114. Epub 2017 Sep 6.
5
Collocation based training of neural ordinary differential equations.基于搭配的神经常微分方程训练。
Stat Appl Genet Mol Biol. 2021 Jul 9;20(2):37-49. doi: 10.1515/sagmb-2020-0025.
6
Stiff neural ordinary differential equations.刚性神经常微分方程。
Chaos. 2021 Sep;31(9):093122. doi: 10.1063/5.0060697.
7
Lumping evolutionary game dynamics on networks.将网络上的进化博弈动力学归为一类。
J Theor Biol. 2016 Oct 21;407:328-338. doi: 10.1016/j.jtbi.2016.07.037. Epub 2016 Jul 27.
9
An introduction to dynamical systems.动力系统导论。
Sci Signal. 2011 Sep 13;4(191):tr6. doi: 10.1126/scisignal.2001982.

引用本文的文献

本文引用的文献

1
Lumping evolutionary game dynamics on networks.将网络上的进化博弈动力学归为一类。
J Theor Biol. 2016 Oct 21;407:328-338. doi: 10.1016/j.jtbi.2016.07.037. Epub 2016 Jul 27.
2
Quantitative and logic modelling of molecular and gene networks.分子和基因网络的定量与逻辑建模。
Nat Rev Genet. 2015 Mar;16(3):146-58. doi: 10.1038/nrg3885. Epub 2015 Feb 3.
4
The replicator equation and other game dynamics.复制子方程和其他博弈动态。
Proc Natl Acad Sci U S A. 2014 Jul 22;111 Suppl 3(Suppl 3):10810-7. doi: 10.1073/pnas.1400823111. Epub 2014 Jul 14.
5
Dynamics of SIN asymmetry establishment.SIN 不对称性建立的动力学。
PLoS Comput Biol. 2013;9(7):e1003147. doi: 10.1371/journal.pcbi.1003147. Epub 2013 Jul 11.
8
Complexity reduction preserving dynamical behavior of biochemical networks.简化生化网络的动力学行为的复杂性。
J Theor Biol. 2012 Jul 7;304:16-26. doi: 10.1016/j.jtbi.2012.03.019. Epub 2012 Mar 23.
9
The interplay of double phosphorylation and scaffolding in MAPK pathways.MAPK 通路中双重磷酸化和支架的相互作用。
J Theor Biol. 2012 Feb 21;295:116-24. doi: 10.1016/j.jtbi.2011.11.014. Epub 2011 Nov 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验