Microsoft Research, Cambridge CB1 2FB, United Kingdom.
Department of Computing, University of Oxford, Oxford OX1 3QD, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10029-10034. doi: 10.1073/pnas.1702697114. Epub 2017 Sep 6.
Ordinary differential equations (ODEs) with polynomial derivatives are a fundamental tool for understanding the dynamics of systems across many branches of science, but our ability to gain mechanistic insight and effectively conduct numerical evaluations is critically hindered when dealing with large models. Here we propose an aggregation technique that rests on two notions of equivalence relating ODE variables whenever they have the same solution (backward criterion) or if a self-consistent system can be written for describing the evolution of sums of variables in the same equivalence class (forward criterion). A key feature of our proposal is to encode a polynomial ODE system into a finitary structure akin to a formal chemical reaction network. This enables the development of a discrete algorithm to efficiently compute the largest equivalence, building on approaches rooted in computer science to minimize basic models of computation through iterative partition refinements. The physical interpretability of the aggregation is shown on polynomial ODE systems for biochemical reaction networks, gene regulatory networks, and evolutionary game theory.
常微分方程 (ODE) 与多项式导数是理解许多科学分支中系统动力学的基本工具,但当处理大型模型时,我们获得机制洞察力和有效进行数值评估的能力受到严重阻碍。在这里,我们提出了一种聚合技术,该技术基于两种等价性概念,即当 ODE 变量具有相同解时(后向准则)或可以为描述同一等价类中变量和的演化编写自洽系统时(前向准则)。我们的建议的一个关键特点是将多项式 ODE 系统编码为类似于形式化学反网络的有限结构。这使我们能够开发一种离散算法来有效地计算最大等价类,该算法基于计算机科学的方法,通过迭代分区细化来最小化基本计算模型。聚合的物理可解释性在生化反应网络、基因调控网络和进化博弈论的多项式 ODE 系统上得到了展示。