iCardiac Technologies, 150 Allens Creek Road, Rochester, NY, 14618, USA.
Biogen, 300 Binney Street, Cambridge, MA, 02142, USA.
Stat Med. 2018 Jul 30;37(17):2630-2644. doi: 10.1002/sim.7669. Epub 2018 May 2.
Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae.
基于机制的低维常微分方程 (ODE) 模型常用于在细胞水平上模拟病毒动力学和传染病的流行。然而,低维基于机制的 ODE 模型对于在分子水平(如转录组或蛋白质组水平)上模拟传染病是有限的,这对于理解疾病的发病机制至关重要。尽管已经提出了用于基因调控网络 (GRN) 的线性 ODE 模型,但 GRN 中常见的是非线性调节。从时间过程基因表达数据中重建大规模非线性网络仍然是一个未解决的问题。在这里,我们使用高维非线性加性 ODE 来建模 GRN,并提出了一个 4 步程序,用于有效地对非线性 ODE 进行变量选择。为了应对高维性的挑战,我们将 ODE 的两阶段平滑估计方法与非线性独立性筛选方法相结合,用于对非线性 ODE 模型进行变量选择。我们已经证明了我们的方法具有确定的筛选属性,并且可以处理非多项式维度的问题。通过模拟数据和用于识别酿酒酵母动态 GRN 的真实数据示例,说明了所提出方法的数值性能。