Suppr超能文献

相似文献

1
Silencing Affects Lignification and Improves Saccharification in Poplar.
Plant Physiol. 2017 Nov;175(3):1040-1057. doi: 10.1104/pp.17.00920. Epub 2017 Sep 6.
4
Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1.
Plant Physiol. 2017 Nov;175(3):1018-1039. doi: 10.1104/pp.17.00834. Epub 2017 Sep 6.
7
Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis.
Science. 2013 Sep 6;341(6150):1103-6. doi: 10.1126/science.1241602. Epub 2013 Aug 15.
9
Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2312-7. doi: 10.1073/pnas.1523264113. Epub 2016 Jan 11.
10
Compensatory Guaiacyl Lignin Biosynthesis at the Expense of Syringyl Lignin in -Knockout Poplar.
Plant Physiol. 2020 May;183(1):123-136. doi: 10.1104/pp.19.01550. Epub 2020 Mar 5.

引用本文的文献

1
Identification of the first plant caffeoyl-quinate esterases in .
Front Plant Sci. 2025 Aug 20;16:1632036. doi: 10.3389/fpls.2025.1632036. eCollection 2025.
2
Insights into Molecular Mechanism of Secondary Xylem Rapid Growth in .
Plants (Basel). 2025 Feb 5;14(3):459. doi: 10.3390/plants14030459.
3
Molecular understanding of wood formation in trees.
For Res (Fayettev). 2022 Apr 25;2:5. doi: 10.48130/FR-2022-0005. eCollection 2022.
4
Grass lignin: biosynthesis, biological roles, and industrial applications.
Front Plant Sci. 2024 Feb 23;15:1343097. doi: 10.3389/fpls.2024.1343097. eCollection 2024.
7
Manipulating microRNA miR408 enhances both biomass yield and saccharification efficiency in poplar.
Nat Commun. 2023 Jul 18;14(1):4285. doi: 10.1038/s41467-023-39930-3.
9
Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi.
J Fungi (Basel). 2022 Dec 29;9(1):52. doi: 10.3390/jof9010052.
10
Lignin engineering in forest trees: From gene discovery to field trials.
Plant Commun. 2022 Nov 14;3(6):100465. doi: 10.1016/j.xplc.2022.100465. Epub 2022 Oct 27.

本文引用的文献

1
Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1.
Plant Physiol. 2017 Nov;175(3):1018-1039. doi: 10.1104/pp.17.00834. Epub 2017 Sep 6.
2
Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content.
Plant Physiol. 2017 Feb;173(2):998-1016. doi: 10.1104/pp.16.01108. Epub 2016 Dec 9.
5
Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis.
Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215. doi: 10.1002/anie.201510351. Epub 2016 Jun 17.
9
Designer lignins: harnessing the plasticity of lignification.
Curr Opin Biotechnol. 2016 Feb;37:190-200. doi: 10.1016/j.copbio.2015.10.009. Epub 2016 Jan 15.
10
Unlocking the potential of lignocellulosic biomass through plant science.
New Phytol. 2016 Mar;209(4):1366-81. doi: 10.1111/nph.13684. Epub 2015 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验