Suppr超能文献

基于CEEMDAN的定轴齿轮箱非接触式早期故障诊断方法

Non-contact incipient fault diagnosis method of fixed-axis gearbox based on CEEMDAN.

作者信息

Dhami S S, Pabla B S

机构信息

Mechanical Engineering Department, National Institute of Technical Teachers Training and Research, Chandigarh 160019, India.

出版信息

R Soc Open Sci. 2017 Aug 23;4(8):170616. doi: 10.1098/rsos.170616. eCollection 2017 Aug.

Abstract

Gearbox plays most essential role in the modern machinery for transmitting the required torque along with motion and contributes to wide range of applications. Any failure in gearbox components affects the productivity and efficiency of the system. Most machine breakdowns related to gears are a result of improper operating conditions and loading, hence lead to failure of the whole mechanism. Ensemble Empirical Mode Decomposition (EEMD) comprises advancement and valuable addition in Empirical Mode Decomposition (EMD) and has been widely used in fault detection of rotating machines. However, intrinsic mode functions (IMFs) produced by EEMD often carry the residual noise. Also, the produced IMFs are different in number due to addition of white Gaussian noise, which leads to final averaging problem. To alleviate these drawbacks, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was previously presented. This paper describes and presents the implementation of CEEMDAN for fault diagnosis of simulated local defects using sound signals in a fixed-axis gearbox. Statistical parameters are extracted from decomposed sound signals for different simulated faults. Results show the effectiveness of CEEMDAN over EEMD in order to obtain more accurate IMFs and fault severity.

摘要

变速箱在现代机械中起着至关重要的作用,用于传递所需的扭矩以及运动,并在广泛的应用中发挥作用。变速箱部件的任何故障都会影响系统的生产率和效率。大多数与齿轮相关的机器故障都是由于操作条件和负载不当造成的,从而导致整个机构失效。总体经验模态分解(EEMD)是经验模态分解(EMD)的改进和有价值的补充,已广泛应用于旋转机械的故障检测。然而,EEMD产生的本征模态函数(IMF)往往携带残余噪声。此外,由于添加了白高斯噪声,产生的IMF数量不同,这导致了最终的平均问题。为了缓解这些缺点,之前提出了具有自适应噪声的完全总体经验模态分解(CEEMDAN)。本文描述并介绍了CEEMDAN在固定轴变速箱中使用声音信号对模拟局部缺陷进行故障诊断的实现。从分解后的声音信号中提取不同模拟故障的统计参数。结果表明,CEEMDAN在获得更准确的IMF和故障严重程度方面比EEMD更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/709b/5579119/8fe8d8f76db2/rsos170616-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验