He Liang, Pitkäniemi Janne, Silventoinen Karri, Sillanpää Mikko J
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
Behav Genet. 2017 Nov;47(6):620-641. doi: 10.1007/s10519-017-9866-y. Epub 2017 Sep 6.
Estimating dynamic effects of age on the genetic and environmental variance components in twin studies may contribute to the investigation of gene-environment interactions, and may provide more insights into more accurate and powerful estimation of heritability. Existing parametric models for estimating dynamic variance components suffer from various drawbacks such as limitation of predefined functions. We present ACEt, an R package for fast estimating dynamic variance components and heritability that may change with respect to age or other moderators. Building on the twin models using penalized splines, ACEt provides a unified framework to incorporate a class of ACE models, in which each component can be modeled independently and is not limited by a linear or quadratic function. We demonstrate that ACEt is robust against misspecification of the number of spline knots, and offers a refined resolution of dynamic behavior of the genetic and environmental components and thus a detailed estimation of age-specific heritability. Moreover, we develop resampling methods for testing twin models with different variance functions including splines, log-linearity and constancy, which can be easily employed to verify various model assumptions. We evaluated the type I error rate and statistical power of the proposed hypothesis testing procedures under various scenarios using simulated datasets. Potential numerical issues and computational cost were also assessed through simulations. We applied the ACEt package to a Finnish twin cohort to investigate age-specific heritability of body mass index and height. Our results show that the age-specific variance components of these two traits exhibited substantially different patterns despite of comparable estimates of heritability. In summary, the ACEt R package offers a useful tool for the exploration of age-dependent heritability and model comparison in twin studies.
在双胞胎研究中估计年龄对遗传和环境方差成分的动态影响,可能有助于基因-环境相互作用的研究,并可能为更准确、有力地估计遗传力提供更多见解。现有的用于估计动态方差成分的参数模型存在各种缺点,如预定义函数的局限性。我们提出了ACEt,这是一个用于快速估计可能随年龄或其他调节因素变化的动态方差成分和遗传力的R包。基于使用惩罚样条的双胞胎模型,ACEt提供了一个统一的框架来纳入一类ACE模型,其中每个成分都可以独立建模,不受线性或二次函数的限制。我们证明了ACEt对样条节点数量的错误指定具有鲁棒性,并能对遗传和环境成分的动态行为提供精细的分辨率,从而详细估计特定年龄的遗传力。此外,我们开发了重采样方法,用于测试具有不同方差函数(包括样条、对数线性和恒定性)的双胞胎模型,这些方法可以很容易地用于验证各种模型假设。我们使用模拟数据集评估了在各种情况下所提出的假设检验程序的I型错误率和统计功效。还通过模拟评估了潜在的数值问题和计算成本。我们将ACEt包应用于一个芬兰双胞胎队列,以研究体重指数和身高的特定年龄遗传力。我们的结果表明,尽管这两个性状的遗传力估计值相当,但它们的特定年龄方差成分呈现出显著不同的模式。总之,ACEt R包为双胞胎研究中探索年龄依赖性遗传力和模型比较提供了一个有用的工具。