Suppr超能文献

估计年龄对双生子模型中遗传和环境方差成分的修饰作用。

Estimating Modifying Effect of Age on Genetic and Environmental Variance Components in Twin Models.

作者信息

He Liang, Sillanpää Mikko J, Silventoinen Karri, Kaprio Jaakko, Pitkäniemi Janne

机构信息

Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina

Department of Mathematical Sciences, University of Oulu, Oulu, Finland Biocenter Oulu, Oulu, Finland.

出版信息

Genetics. 2016 Apr;202(4):1313-28. doi: 10.1534/genetics.115.183905. Epub 2016 Feb 11.

Abstract

Twin studies have been adopted for decades to disentangle the relative genetic and environmental contributions for a wide range of traits. However, heritability estimation based on the classical twin models does not take into account dynamic behavior of the variance components over age. Varying variance of the genetic component over age can imply the existence of gene-environment (G×E) interactions that general genome-wide association studies (GWAS) fail to capture, which may lead to the inconsistency of heritability estimates between twin design and GWAS. Existing parametricG×Einteraction models for twin studies are limited by assuming a linear or quadratic form of the variance curves with respect to a moderator that can, however, be overly restricted in reality. Here we propose spline-based approaches to explore the variance curves of the genetic and environmental components. We choose the additive genetic, common, and unique environmental variance components (ACE) model as the starting point. We treat the component variances as variance functions with respect to age modeled by B-splines or P-splines. We develop an empirical Bayes method to estimate the variance curves together with their confidence bands and provide an R package for public use. Our simulations demonstrate that the proposed methods accurately capture dynamic behavior of the component variances in terms of mean square errors with a data set of >10,000 twin pairs. Using the proposed methods as an alternative and major extension to the classical twin models, our analyses with a large-scale Finnish twin data set (19,510 MZ twins and 27,312 DZ same-sex twins) discover that the variances of the A, C, and E components for body mass index (BMI) change substantially across life span in different patterns and the heritability of BMI drops to ∼50% after middle age. The results further indicate that the decline of heritability is due to increasing unique environmental variance, which provides more insights into age-specific heritability of BMI and evidence ofG×Einteractions. These findings highlight the fundamental importance and implication of the proposed models in facilitating twin studies to investigate the heritability specific to age and other modifying factors.

摘要

几十年来,双胞胎研究一直被用于剖析广泛性状的相对遗传和环境贡献。然而,基于经典双胞胎模型的遗传力估计并未考虑方差成分随年龄的动态变化。遗传成分随年龄的方差变化可能意味着存在基因 - 环境(G×E)相互作用,而全基因组关联研究(GWAS)未能捕捉到这种相互作用,这可能导致双胞胎设计和GWAS之间遗传力估计的不一致。现有的双胞胎研究参数化G×E相互作用模型受到限制,因为它们假设方差曲线相对于调节变量呈线性或二次形式,而在现实中这种假设可能过于受限。在此,我们提出基于样条的方法来探索遗传和环境成分的方差曲线。我们选择加性遗传、共同和独特环境方差成分(ACE)模型作为起点。我们将成分方差视为关于年龄的方差函数,通过B样条或P样条进行建模。我们开发了一种经验贝叶斯方法来估计方差曲线及其置信区间,并提供了一个供公众使用的R包。我们的模拟表明,对于一个超过10000对双胞胎的数据集,所提出的方法在均方误差方面能够准确捕捉成分方差的动态变化。将所提出的方法作为经典双胞胎模型的替代方法和主要扩展,我们对一个大规模芬兰双胞胎数据集(19510对同卵双胞胎和27312对同性异卵双胞胎)的分析发现,体重指数(BMI)的A、C和E成分方差在整个生命周期中以不同模式大幅变化,并且BMI的遗传力在中年后降至约50%。结果进一步表明,遗传力的下降是由于独特环境方差的增加,这为BMI的年龄特异性遗传力提供了更多见解以及G×E相互作用的证据。这些发现凸显了所提出模型在促进双胞胎研究以调查年龄特异性遗传力和其他调节因素方面的根本重要性和意义。

相似文献

1
Estimating Modifying Effect of Age on Genetic and Environmental Variance Components in Twin Models.
Genetics. 2016 Apr;202(4):1313-28. doi: 10.1534/genetics.115.183905. Epub 2016 Feb 11.
2
ACEt: An R Package for Estimating Dynamic Heritability and Comparing Twin Models.
Behav Genet. 2017 Nov;47(6):620-641. doi: 10.1007/s10519-017-9866-y. Epub 2017 Sep 6.
5
Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population.
J Vasc Surg. 2010 Jan;51(1):3-7; discussion 7. doi: 10.1016/j.jvs.2009.08.036. Epub 2009 Nov 24.
6
Genetic and Environmental Contributions to the Covariation Between Cardiometabolic Traits.
J Am Heart Assoc. 2018 Apr 18;7(9):e007806. doi: 10.1161/JAHA.117.007806.
7
Gene, environment and cognitive function: a Chinese twin ageing study.
Age Ageing. 2015 May;44(3):452-7. doi: 10.1093/ageing/afv015. Epub 2015 Apr 1.
10
[Genetic and environmental contributions to body mass index in a Spanish adolescent twin sample].
Med Clin (Barc). 2015 Aug 21;145(4):153-9. doi: 10.1016/j.medcli.2014.05.039. Epub 2014 Jul 24.

引用本文的文献

1
Heritability Estimation of Cognitive Phenotypes in the ABCD Study Using Mixed Models.
Behav Genet. 2023 May;53(3):169-188. doi: 10.1007/s10519-023-10141-2. Epub 2023 Apr 7.
4
The intergenerational transmission of suicidal behavior: an offspring of siblings study.
Transl Psychiatry. 2020 May 30;10(1):173. doi: 10.1038/s41398-020-0850-6.
6
Estimation of dynamic SNP-heritability with Bayesian Gaussian process models.
Bioinformatics. 2020 Jun 1;36(12):3795-3802. doi: 10.1093/bioinformatics/btaa199.
7
Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models.
Genetics. 2020 May;215(1):41-58. doi: 10.1534/genetics.119.302940. Epub 2020 Mar 4.

本文引用的文献

3
Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.
Trends Plant Sci. 2015 Dec;20(12):822-833. doi: 10.1016/j.tplants.2015.08.012. Epub 2015 Oct 5.
6
Nonparametric Estimates of Gene × Environment Interaction Using Local Structural Equation Modeling.
Behav Genet. 2015 Sep;45(5):581-96. doi: 10.1007/s10519-015-9732-8. Epub 2015 Aug 29.
8
Meta-analysis of the heritability of human traits based on fifty years of twin studies.
Nat Genet. 2015 Jul;47(7):702-9. doi: 10.1038/ng.3285. Epub 2015 May 18.
9
Genetic studies of body mass index yield new insights for obesity biology.
Nature. 2015 Feb 12;518(7538):197-206. doi: 10.1038/nature14177.
10
A century after Fisher: time for a new paradigm in quantitative genetics.
Trends Genet. 2013 Dec;29(12):669-76. doi: 10.1016/j.tig.2013.09.006. Epub 2013 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验