Suppr超能文献

γ-氨基丁酸能抑制控制边缘皮层中兴奋性 LTP。

GABAergic inhibition gates excitatory LTP in perirhinal cortex.

机构信息

Center for Neural Science, New York, New York 10003.

Department of Psychology, Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York 10003.

出版信息

Hippocampus. 2017 Dec;27(12):1217-1223. doi: 10.1002/hipo.22799. Epub 2017 Sep 26.

Abstract

The perirhinal cortex (PRh) is a key region downstream of auditory cortex (ACx) that processes familiarity linked mnemonic signaling. In gerbils, ACx-driven EPSPs recorded in PRh neurons are largely shunted by GABAergic inhibition (Kotak et al., 2015, Frontiers in Neural Circuits, 9). To determine whether inhibitory shunting prevents the induction of excitatory long-term potentiation (e-LTP), we stimulated ACx-recipient PRh in a brain slice preparation using theta burst stimulation (TBS). Under control conditions, without GABA blockers, the majority of PRh neurons exhibited long-term depression. A very low concentration of bicuculline increased EPSP amplitude, but under this condition TBS did not significantly increase e-LTP induction. Since PRh synaptic inhibition included a GABA receptor-mediated component, we added a GABA receptor antagonist. When both GABA and GABA receptors were blocked, TBS reliably induced e-LTP in a majority of PRh neurons. We conclude that GABAergic transmission is a vital mechanism regulating e-LTP induction in the PRh, and may be associated with auditory learning.

摘要

边缘下皮层(PRh)是听觉皮层(ACx)下游的一个关键区域,它处理与记忆有关的信号。在沙鼠中,记录在 PRh 神经元中的 ACx 驱动的 EPSP 很大程度上被 GABA 能抑制(GABAergic inhibition)分流(Kotak 等人,2015,《神经回路前沿》,9)。为了确定抑制性分流是否阻止兴奋性长时程增强(e-LTP)的诱导,我们使用 theta 爆发刺激(TBS)在脑片制备中刺激 ACx 接收的 PRh。在对照条件下,没有 GABA 阻断剂时,大多数 PRh 神经元表现出长时程抑制。非常低浓度的印防己毒素(bicuculline)增加了 EPSP 幅度,但在这种情况下,TBS 并没有显著增加 e-LTP 的诱导。由于 PRh 突触抑制包括 GABA 受体介导的成分,我们添加了 GABA 受体拮抗剂。当 GABA 和 GABA 受体都被阻断时,TBS 可靠地诱导了大多数 PRh 神经元中的 e-LTP。我们得出结论,GABA 能传递是调节 PRh 中 e-LTP 诱导的重要机制,可能与听觉学习有关。

相似文献

1
GABAergic inhibition gates excitatory LTP in perirhinal cortex.
Hippocampus. 2017 Dec;27(12):1217-1223. doi: 10.1002/hipo.22799. Epub 2017 Sep 26.
2
Characterization of auditory synaptic inputs to gerbil perirhinal cortex.
Front Neural Circuits. 2015 Aug 14;9:40. doi: 10.3389/fncir.2015.00040. eCollection 2015.
6
β-Adrenoceptors and synaptic plasticity in the perirhinal cortex.
Neuroscience. 2014 Jul 25;273(100):163-73. doi: 10.1016/j.neuroscience.2014.04.070. Epub 2014 May 14.
7
Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei.
J Neurophysiol. 2000 Sep;84(3):1414-21. doi: 10.1152/jn.2000.84.3.1414.
8
GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat.
Neuroscience. 2005;132(3):789-800. doi: 10.1016/j.neuroscience.2005.01.027.
10
C-type natriuretic peptide modulates bidirectional plasticity in hippocampal area CA1 in vitro.
Neuroscience. 2010 Aug 11;169(1):8-22. doi: 10.1016/j.neuroscience.2010.04.064. Epub 2010 May 8.

引用本文的文献

1
Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective.
Anat Sci Int. 2024 Jan;99(1):17-33. doi: 10.1007/s12565-023-00743-5. Epub 2023 Oct 14.
2
Organization of orbitofrontal-auditory pathways in the Mongolian gerbil.
J Comp Neurol. 2023 Oct;531(14):1459-1481. doi: 10.1002/cne.25525. Epub 2023 Jul 21.
4
Endocytosis is required for consolidation of pattern-separated memories in the perirhinal cortex.
Front Syst Neurosci. 2023 Feb 23;17:1043664. doi: 10.3389/fnsys.2023.1043664. eCollection 2023.
5
Cortical Inhibition State-Dependent iTBS Induced Neural Plasticity.
Front Neurosci. 2022 Feb 17;16:788538. doi: 10.3389/fnins.2022.788538. eCollection 2022.
6
Early Sensory Deprivation Leads to Differential Inhibitory Changes in the Striatum During Learning.
Front Neural Circuits. 2021 May 28;15:670858. doi: 10.3389/fncir.2021.670858. eCollection 2021.
9
Critical role of glutamatergic and GABAergic neurotransmission in the central mechanisms of theta-burst stimulation.
Hum Brain Mapp. 2019 Apr 15;40(6):2001-2009. doi: 10.1002/hbm.24485. Epub 2019 Jan 1.

本文引用的文献

1
Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates.
Brain Struct Funct. 2016 Sep;221 Suppl 1(Suppl 1):1-272. doi: 10.1007/s00429-016-1259-0. Epub 2016 Aug 10.
2
Finding and Not Finding Rat Perirhinal Neuronal Responses to Novelty.
Hippocampus. 2016 Aug;26(8):1021-32. doi: 10.1002/hipo.22584. Epub 2016 Apr 18.
3
Bidirectional Modulation of Recognition Memory.
J Neurosci. 2015 Sep 30;35(39):13323-35. doi: 10.1523/JNEUROSCI.2278-15.2015.
4
Characterization of auditory synaptic inputs to gerbil perirhinal cortex.
Front Neural Circuits. 2015 Aug 14;9:40. doi: 10.3389/fncir.2015.00040. eCollection 2015.
5
Subchronic phencyclidine treatment in adult mice increases GABAergic transmission and LTP threshold in the hippocampus.
Neuropharmacology. 2016 Jan;100:90-7. doi: 10.1016/j.neuropharm.2015.04.012. Epub 2015 Apr 30.
6
Cortical Synaptic Inhibition Declines during Auditory Learning.
J Neurosci. 2015 Apr 22;35(16):6318-25. doi: 10.1523/JNEUROSCI.4051-14.2015.
7
Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex.
Neuron. 2015 Apr 22;86(2):514-28. doi: 10.1016/j.neuron.2015.03.014. Epub 2015 Apr 2.
8
Theta-burst LTP.
Brain Res. 2015 Sep 24;1621:38-50. doi: 10.1016/j.brainres.2014.10.034. Epub 2014 Oct 27.
9
Mechanisms of synaptic plasticity and recognition memory in the perirhinal cortex.
Prog Mol Biol Transl Sci. 2014;122:193-209. doi: 10.1016/B978-0-12-420170-5.00007-6.
10
The effects of combined perirhinal and postrhinal damage on complex discrimination tasks.
Hippocampus. 2012 Oct;22(10):2059-67. doi: 10.1002/hipo.22063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验