Suppr超能文献

基于自适应范围不变深度模型和时空一致性约束的 RGB-D 目标跟踪的彩色和深度数据的鲁棒融合。

Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints.

出版信息

IEEE Trans Cybern. 2018 Aug;48(8):2485-2499. doi: 10.1109/TCYB.2017.2740952. Epub 2017 Sep 6.

Abstract

This paper presents a novel robust method for single target tracking in RGB-D images, and also contributes a substantial new benchmark dataset for evaluating RGB-D trackers. While a target object's color distribution is reasonably motion-invariant, this is not true for the target's depth distribution, which continually varies as the target moves relative to the camera. It is therefore nontrivial to design target models which can fully exploit (potentially very rich) depth information for target tracking. For this reason, much of the previous RGB-D literature relies on color information for tracking, while exploiting depth information only for occlusion reasoning. In contrast, we propose an adaptive range-invariant target depth model, and show how both depth and color information can be fully and adaptively fused during the search for the target in each new RGB-D image. We introduce a new, hierarchical, two-layered target model (comprising local and global models) which uses spatio-temporal consistency constraints to achieve stable and robust on-the-fly target relearning. In the global layer, multiple features, derived from both color and depth data, are adaptively fused to find a candidate target region. In ambiguous frames, where one or more features disagree, this global candidate region is further decomposed into smaller local candidate regions for matching to local-layer models of small target parts. We also note that conventional use of depth data, for occlusion reasoning, can easily trigger false occlusion detections when the target moves rapidly toward the camera. To overcome this problem, we show how combining target information with contextual information enables the target's depth constraint to be relaxed. Our adaptively relaxed depth constraints can robustly accommodate large and rapid target motion in the depth direction, while still enabling the use of depth data for highly accurate reasoning about occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis. Our tracker is evaluated using two different state-of-the-art methodologies, VOT and object tracking benchmark, and in both cases it significantly outperforms four other state-of-the-art RGB-D trackers from the literature.

摘要

本文提出了一种新颖的稳健的 RGB-D 图像中单目标跟踪方法,并贡献了一个用于评估 RGB-D 跟踪器的大量新基准数据集。虽然目标物体的颜色分布在运动中具有相当的不变性,但目标的深度分布却并非如此,因为目标相对于相机的移动会导致深度分布不断变化。因此,设计能够充分利用(可能非常丰富)深度信息进行目标跟踪的目标模型并非易事。出于这个原因,以前的许多 RGB-D 文献都依赖于颜色信息进行跟踪,而仅将深度信息用于遮挡推理。相比之下,我们提出了一种自适应的范围不变的目标深度模型,并展示了如何在每个新的 RGB-D 图像中搜索目标时,充分且自适应地融合深度和颜色信息。我们引入了一种新的、分层的、两层目标模型(包含局部和全局模型),该模型使用时空一致性约束来实现稳定和鲁棒的实时目标重新学习。在全局层中,从颜色和深度数据中提取的多个特征被自适应地融合,以找到候选目标区域。在模糊帧中,当一个或多个特征不一致时,全局候选区域会进一步分解为较小的局部候选区域,以匹配小目标部分的局部层模型。我们还注意到,当目标快速朝向相机移动时,传统的深度数据用于遮挡推理很容易触发错误的遮挡检测。为了克服这个问题,我们展示了如何将目标信息与上下文信息结合起来,从而放宽目标的深度约束。我们自适应地放宽的深度约束可以稳健地适应深度方向上的大而快速的目标运动,同时仍然能够使用深度数据进行高精度的遮挡推理。为了进行评估,我们引入了一个具有逐帧注释属性和广泛偏差分析的新的 RGB-D 基准数据集。我们的跟踪器使用两种不同的最先进的方法学(VOT 和目标跟踪基准)进行评估,在这两种情况下,它都明显优于文献中的其他四个最先进的 RGB-D 跟踪器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验