Suppr超能文献

基于自适应耦合层视觉模型的鲁棒视觉跟踪。

Robust visual tracking using an adaptive coupled-layer visual model.

机构信息

Faculty of Computer and Information Science, University of Ljubljana, Trzaska 25, SI-1001 Ljubljana, Slovenia.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):941-53. doi: 10.1109/TPAMI.2012.145.

Abstract

This paper addresses the problem of tracking objects which undergo rapid and significant appearance changes. We propose a novel coupled-layer visual model that combines the target's global and local appearance by interlacing two layers. The local layer in this model is a set of local patches that geometrically constrain the changes in the target's appearance. This layer probabilistically adapts to the target's geometric deformation, while its structure is updated by removing and adding the local patches. The addition of these patches is constrained by the global layer that probabilistically models the target's global visual properties, such as color, shape, and apparent local motion. The global visual properties are updated during tracking using the stable patches from the local layer. By this coupled constraint paradigm between the adaptation of the global and the local layer, we achieve a more robust tracking through significant appearance changes. We experimentally compare our tracker to 11 state-of-the-art trackers. The experimental results on challenging sequences confirm that our tracker outperforms the related trackers in many cases by having a smaller failure rate as well as better accuracy. Furthermore, the parameter analysis shows that our tracker is stable over a range of parameter values.

摘要

本文针对目标外观发生快速显著变化的跟踪问题,提出了一种新的耦合层视觉模型,通过交织两层来结合目标的全局和局部外观。该模型中的局部层是一组局部补丁,它们在几何上约束目标外观的变化。该层概率地适应目标的几何变形,同时通过移除和添加局部补丁来更新其结构。这些补丁的添加受到全局层的约束,全局层概率地建模目标的全局视觉属性,如颜色、形状和明显的局部运动。在跟踪过程中,使用局部层中的稳定补丁更新全局视觉属性。通过全局层和局部层之间的这种自适应约束范式,我们实现了更稳健的跟踪,能够应对显著的外观变化。我们通过将我们的跟踪器与 11 个最先进的跟踪器进行实验比较,在具有挑战性的序列上的实验结果证实,在许多情况下,我们的跟踪器的失败率更小,准确性更高,因此优于相关跟踪器。此外,参数分析表明,我们的跟踪器在一系列参数值下是稳定的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验