Suppr超能文献

评估 HZETRN 在火星表面的应用:敏感性测试和模型结果。

Evaluation of HZETRN on the Martian surface: Sensitivity tests and model results.

机构信息

NASA Langley Research Center, 2 West Reid St., Mail stop 188E, Hampton, VA 23681-2199, USA.

Leidos, Houston, TX 77004, USA.

出版信息

Life Sci Space Res (Amst). 2017 Aug;14:29-35. doi: 10.1016/j.lssr.2017.03.001. Epub 2017 Mar 9.

Abstract

The Mars Science Laboratory Radiation Assessment Detector (MSLRAD) is providing continuous measurements of dose, dose equivalent, and particle flux on the surface of Mars. These measurements have been highly useful in validating environmental and radiation transport models that will be heavily relied upon for future deep space missions. In this work, the HZETRN code is utilized to estimate radiation quantities of interest on the Martian surface. A description of the modeling approach used with HZETRN is given along with the various input models and parameters used to define the galactic cosmic ray (GCR) environment and Martian geometry. Sensitivity tests are performed to gauge the impact of varying several input factors on quantities being compared to MSLRAD data. Results from these tests provide context for inter-code comparisons presented in a companion paper within this issue. It is found that details of the regolith and atmospheric composition have a minimal impact on surface flux, dose, and dose equivalent. Details of the density variation within the atmosphere and uncertainties associated with specifying the vertical atmospheric thickness are also found to have minimal impact. Two widely used GCR models are used as input into HZETRN and it is found that the associated surface quantities are within several percent of each other.

摘要

火星科学实验室辐射评估探测器(MSLRAD)正在持续测量火星表面的剂量、剂量当量和粒子通量。这些测量结果在验证环境和辐射传输模型方面非常有用,这些模型将在未来的深空任务中得到广泛应用。在这项工作中,使用 HZETRN 代码来估算火星表面的感兴趣的辐射量。本文介绍了与 HZETRN 一起使用的建模方法,以及用于定义银河宇宙射线(GCR)环境和火星几何形状的各种输入模型和参数。进行了敏感性测试,以衡量在与 MSLRAD 数据进行比较时,改变几个输入因素对数量的影响。这些测试的结果为本文档中另一篇论文中提出的代码间比较提供了背景。结果发现,风化层和大气成分的细节对表面通量、剂量和剂量当量的影响很小。还发现,大气内部密度变化的细节以及指定垂直大气厚度的不确定性对其影响也很小。将两种常用的 GCR 模型用作 HZETRN 的输入,结果发现相关的表面量彼此相差几个百分点。

相似文献

1
Evaluation of HZETRN on the Martian surface: Sensitivity tests and model results.
Life Sci Space Res (Amst). 2017 Aug;14:29-35. doi: 10.1016/j.lssr.2017.03.001. Epub 2017 Mar 9.
3
The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data.
Life Sci Space Res (Amst). 2017 Aug;14:18-28. doi: 10.1016/j.lssr.2017.06.003. Epub 2017 Jun 28.
4
The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016.
Life Sci Space Res (Amst). 2017 Aug;14:3-11. doi: 10.1016/j.lssr.2017.07.004. Epub 2017 Jul 8.
5
Description of light ion production cross sections and fluxes on the Mars surface using the QMSFRG model.
Radiat Environ Biophys. 2007 Jun;46(2):101-6. doi: 10.1007/s00411-007-0099-y. Epub 2007 Mar 7.
6
Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6.
Life Sci Space Res (Amst). 2017 Aug;14:43-50. doi: 10.1016/j.lssr.2017.07.003. Epub 2017 Jul 6.
7
The radiation environment on the surface of Mars - Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS.
Life Sci Space Res (Amst). 2017 Aug;14:57-63. doi: 10.1016/j.lssr.2017.03.005. Epub 2017 Apr 1.
9
Neutron environments on the Martian surface.
Phys Med. 2001;17 Suppl 1:94-6.
10
Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes.
Life Sci Space Res (Amst). 2017 Aug;14:64-73. doi: 10.1016/j.lssr.2017.04.001. Epub 2017 Apr 20.

引用本文的文献

1
Validated space radiation exposure predictions from earth to mars during Artemis-I.
NPJ Microgravity. 2025 Feb 11;11(1):6. doi: 10.1038/s41526-025-00459-y.
2
Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings.
Life Sci Space Res (Amst). 2017 Aug;14:1-2. doi: 10.1016/j.lssr.2017.06.004. Epub 2017 Jul 14.

本文引用的文献

1
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.
Life Sci Space Res (Amst). 2016 Jun;9:77-83. doi: 10.1016/j.lssr.2016.05.001. Epub 2016 May 14.
2
Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry.
Life Sci Space Res (Amst). 2016 Jun;9:69-76. doi: 10.1016/j.lssr.2016.05.002. Epub 2016 May 24.
3
Neutron yields and effective doses produced by Galactic Cosmic Ray interactions in shielded environments in space.
Life Sci Space Res (Amst). 2015 Nov;7:90-9. doi: 10.1016/j.lssr.2015.10.005. Epub 2015 Oct 22.
4
Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.
Science. 2013 May 31;340(6136):1080-4. doi: 10.1126/science.1235989.
5
A new Mars radiation environment model with visualization.
Adv Space Res. 2004;34(6):1328-32. doi: 10.1016/j.asr.2003.09.059.
6
Light ion components of the galactic cosmic rays: nuclear interactions and transport theory.
Adv Space Res. 1996;17(2):77-86. doi: 10.1016/0273-1177(95)00515-g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验