Suppr超能文献

共表达 GroEL-GroES 伴侣分子将无活性木酮糖异构酶转化为功能性酶在酿酒酵母中。

Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae.

机构信息

Laboratory of Genomics and Expression, Department of Genetics and Evolution, Institute of Biology, UNICAMP, Campinas, São Paulo, 13083-970, Brazil.

CTBE - Brazilian Bioethanol Science and Technology Laboratory, Campinas, SP, Brazil.

出版信息

BMC Biotechnol. 2017 Sep 9;17(1):71. doi: 10.1186/s12896-017-0389-7.

Abstract

BACKGROUND

Second-generation ethanol production is a clean bioenergy source with potential to mitigate fossil fuel emissions. The engineering of Saccharomyces cerevisiae for xylose utilization is an essential step towards the production of this biofuel. Though xylose isomerase (XI) is the key enzyme for xylose conversion, almost half of the XI genes are not functional when expressed in S. cerevisiae. To date, protein misfolding is the most plausible hypothesis to explain this phenomenon.

RESULTS

This study demonstrated that XI from the bacterium Propionibacterium acidipropionici becomes functional in S. cerevisiae when co-expressed with GroEL-GroES chaperonin complex from Escherichia coli. The developed strain BTY34, harboring the chaperonin complex, is able to efficiently convert xylose to ethanol with a yield of 0.44 g ethanol/g xylose. Furthermore, the BTY34 strain presents a xylose consumption rate similar to those observed for strains carrying the widely used XI from the fungus Orpinomyces sp. In addition, the tetrameric XI structure from P. acidipropionici showed an elevated number of hydrophobic amino acid residues on the surface of protein when compared to XI commonly expressed in S. cerevisiae.

CONCLUSIONS

Based on our results, we elaborate an extensive discussion concerning the uncertainties that surround heterologous expression of xylose isomerases in S. cerevisiae. Probably, a correct folding promoted by GroEL-GroES could solve some issues regarding a limited or absent XI activity in S. cerevisiae. The strains developed in this work have promising industrial characteristics, and the designed strategy could be an interesting approach to overcome the non-functionality of bacterial protein expression in yeasts.

摘要

背景

第二代乙醇生产是一种清洁的生物能源,具有减轻化石燃料排放的潜力。工程化酿酒酵母以利用木糖是生产这种生物燃料的关键步骤。尽管木糖异构酶(XI)是木糖转化的关键酶,但几乎一半的 XI 基因在酿酒酵母中表达时没有功能。迄今为止,蛋白质错误折叠是解释这种现象的最合理假设。

结果

本研究表明,当与来自大肠杆菌的 GroEL-GroES 伴侣蛋白复合物共表达时,来自丙酸丙酸杆菌的 XI 在酿酒酵母中变得具有功能。开发的菌株 BTY34 携带伴侣蛋白复合物,能够有效地将木糖转化为乙醇,产率为 0.44 g 乙醇/g 木糖。此外,与携带真菌 Orpinomyces sp. 中广泛使用的 XI 的菌株相比,BTY34 菌株的木糖消耗率相似。此外,与在酿酒酵母中通常表达的 XI 相比,来自丙酸丙酸杆菌的 XI 四聚体结构在蛋白质表面显示出更多的疏水性氨基酸残基。

结论

基于我们的结果,我们详细讨论了在酿酒酵母中异源表达木糖异构酶所存在的不确定性。可能,GroEL-GroES 促进的正确折叠可以解决酿酒酵母中 XI 活性有限或不存在的一些问题。本工作中开发的菌株具有有前景的工业特性,并且所设计的策略可能是克服细菌蛋白在酵母中表达无功能的一种有趣方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c14c/5591498/ec042b8dc66c/12896_2017_389_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验