Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue Pierre et Marie Curie, 75005 Paris, France.
Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue Pierre et Marie Curie, 75005 Paris, France.
Biochim Biophys Acta Bioenerg. 2017 Dec;1858(12):966-974. doi: 10.1016/j.bbabio.2017.09.001. Epub 2017 Sep 7.
The chloroplast FF-ATP synthase (CFF) drives ATP synthesis and the reverse reaction of ATP hydrolysis. The enzyme evolved in a cellular environment where electron transfer processes and molecular oxygen are abundant, and thiol modulation in the γ-subunit via thioredoxin is important for its ATPase activity regulation. Especially under high light, oxygen can be reduced and forms reactive oxygen species (ROS) which can oxidize CFF among various other biomolecules. Mutation of the conserved ROS targets resulted in a tolerant enzyme, suggesting that ROS might play a regulatory role. The mutations had several side effects in vitro, including disturbance of the ATPase redox regulation [F. Buchert et al., Biochim. Biophys. Acta, 1817 (2012) 2038-2048]. This would prevent disentanglement of thiol- and ROS-specific modes of regulation. Here, we used the F catalytic core in vitro to identify a point mutant with a functional ATPase redox regulation and increased HO tolerance. In the next step, the mutation was introduced into Chlamydomonas reinhardtii CFF, thereby allowing us to study the physiological role of ROS regulation of the enzyme in vivo. We demonstrated in high light experiments that CFF ROS targets were involved in the significant inhibition of ATP synthesis rates. Molecular events upon modification of CFF by ROS will be considered.
叶绿体 FF-ATP 合酶(CFF)驱动 ATP 的合成和 ATP 水解的逆反应。该酶在一个细胞环境中进化,在该环境中电子传递过程和分子氧丰富,并且通过硫氧还蛋白对 γ 亚基的巯基调节对于其 ATP 酶活性的调节很重要。特别是在高光下,氧气可以被还原并形成活性氧(ROS),这可以使各种其他生物分子中的 CFF 氧化。ROS 靶标的保守突变导致了耐受酶,这表明 ROS 可能发挥调节作用。这些突变在体外有几个副作用,包括干扰 ATP 酶的氧化还原调节[F. Buchert 等人,生物化学。生物物理学。学报,1817(2012)2038-2048]。这将阻止巯基和 ROS 特异性调节模式的分离。在这里,我们在体外使用 F 催化核心来鉴定具有功能性 ATP 酶氧化还原调节和增加 HO 耐受性的点突变体。在下一步中,将该突变引入到莱茵衣藻 CFF 中,从而使我们能够在体内研究酶的 ROS 调节的生理作用。我们在高光实验中证明,CFF ROS 靶标参与了 ATP 合成速率的显著抑制。在 ROS 修饰 CFF 时将考虑分子事件。