Suppr超能文献

叶绿体 ATP 合酶氧化还原结构域逃避了异养暗代谢的活性调控。

The chloroplast ATP synthase redox domain in eludes activity regulation for heterotrophic dark metabolism.

机构信息

Institute of Plant Biology and Biotechnology, Department of Biology, University of Münster, Münster 48143, Germany.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2412589121. doi: 10.1073/pnas.2412589121. Epub 2024 Nov 6.

Abstract

To maintain CO fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CFF) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CFF γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CFF from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in that algal CFF is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CFF active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CFF, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CFF as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of requires a specific CFF dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.

摘要

为了维持卡尔文-本森-巴斯汉姆循环中的二氧化碳固定,叶绿体 ATP 合酶(CFF)的多步骤调节对于平衡光合作用的 ATP 输出和保护装置至关重要。一个经过充分研究的机制是硫醇调节;一种通过可逆地切割 CFF γ 亚基中的二硫键来进行的光/暗调节。在黑暗适应的陆地植物 CFF 中,二硫键通过增加所需的跨膜电化学质子梯度 ([Formula: see text]) 来阻碍 ATP 合成和水解反应。在这里,我们在 中表明,藻类 CFF 在体内受到不同的调节。γ 亚基氧化还原域中的特定发夹结构将活性调节与黑暗中二硫键的形成分离。电致变色位移测量表明,发夹使野生型 CFF 保持活性,而在表达类似于植物的发夹结构的藻类突变细胞中,酶则关闭。发夹片段交换导致植物样 CFF 的 [Formula: see text] 阈值升高,约增加了 1.4 个光系统 (PS) I 电荷分离。在突变体中,由此产生的黑暗平衡 [Formula: see text] 下降了约 2.7 PSI 电荷分离当量。光生物反应器实验表明,在自养充气突变体培养物中没有表型。相比之下,在异养黑暗条件下的叶绿素荧光测量表明,由于与野生型相比生物能从偏离,具有植物样 CFF 的细胞中存在暗代谢的改变。我们的结果表明, 的生活方式需要一种特定的 CFF 暗调节,这种调节参与了叶绿体和乙酸燃料线粒体之间的代谢偶联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e37/11573611/aa100714ae2c/pnas.2412589121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验