Agrawal Purshottam Narain, Baxhaku Behar, Chauhan Ruchi
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, 247667 India.
Department of Mathematics, University of Prishtina, Mother Teresa, Prishtina, 10000 Kosovo.
J Inequal Appl. 2017;2017(1):195. doi: 10.1186/s13660-017-1465-1. Epub 2017 Aug 23.
In this paper, we introduce a bivariate Kantorovich variant of combination of Szász and Chlodowsky operators based on Charlier polynomials. Then, we study local approximation properties for these operators. Also, we estimate the approximation order in terms of Peetre's K-functional and partial moduli of continuity. Furthermore, we introduce the associated GBS-case (Generalized Boolean Sum) of these operators and study the degree of approximation by means of the Lipschitz class of Bögel continuous functions. Finally, we present some graphical examples to illustrate the rate of convergence of the operators under consideration.
在本文中,我们基于查利尔多项式引入了萨兹算子和克洛多夫斯基算子组合的二元坎托罗维奇变体。然后,我们研究这些算子的局部逼近性质。此外,我们根据皮特雷的K - 泛函和部分连续模来估计逼近阶。再者,我们引入这些算子的相关广义布尔和(GBS - 情形),并借助博格尔连续函数的利普希茨类来研究逼近度。最后,我们给出一些图形示例来说明所考虑算子的收敛速率。