Suppr超能文献

一种基于堆叠自动编码器深度神经网络预测药物-靶点相互作用的计算方法。

A Computational-Based Method for Predicting Drug-Target Interactions by Using Stacked Autoencoder Deep Neural Network.

作者信息

Wang Lei, You Zhu-Hong, Chen Xing, Xia Shi-Xiong, Liu Feng, Yan Xin, Zhou Yong, Song Ke-Jian

机构信息

1 School of Computer Science and Technology, China University of Mining and Technology , Xuzhou, China .

2 College of Information Science and Engineering, Zaozhuang University , Zaozhuang, China .

出版信息

J Comput Biol. 2018 Mar;25(3):361-373. doi: 10.1089/cmb.2017.0135. Epub 2017 Sep 11.

Abstract

Identifying the interaction between drugs and target proteins is an important area of drug research, which provides a broad prospect for low-risk and faster drug development. However, due to the limitations of traditional experiments when revealing drug-protein interactions (DTIs), the screening of targets not only takes a lot of time and money but also has high false-positive and false-negative rates. Therefore, it is imperative to develop effective automatic computational methods to accurately predict DTIs in the postgenome era. In this article, we propose a new computational method for predicting DTIs from drug molecular structure and protein sequence by using the stacked autoencoder of deep learning, which can adequately extract the raw data information. The proposed method has the advantage that it can automatically mine the hidden information from protein sequences and generate highly representative features through iterations of multiple layers. The feature descriptors are then constructed by combining the molecular substructure fingerprint information, and fed into the rotation forest for accurate prediction. The experimental results of fivefold cross-validation indicate that the proposed method achieves superior performance on gold standard data sets (enzymes, ion channels, GPCRs [G-protein-coupled receptors], and nuclear receptors) with accuracy of 0.9414, 0.9116, 0.8669, and 0.8056, respectively. We further comprehensively explore the performance of the proposed method by comparing it with other feature extraction algorithms, state-of-the-art classifiers, and other excellent methods on the same data set. The excellent comparison results demonstrate that the proposed method is highly competitive when predicting drug-target interactions.

摘要

识别药物与靶蛋白之间的相互作用是药物研究的一个重要领域,为低风险、更快的药物开发提供了广阔前景。然而,由于传统实验在揭示药物-蛋白质相互作用(DTIs)时存在局限性,靶点筛选不仅耗费大量时间和金钱,而且假阳性和假阴性率很高。因此,在基因组时代开发有效的自动计算方法来准确预测DTIs势在必行。在本文中,我们提出了一种新的计算方法,通过使用深度学习的堆叠自动编码器从药物分子结构和蛋白质序列预测DTIs,该方法能够充分提取原始数据信息。所提出的方法具有能够自动从蛋白质序列中挖掘隐藏信息并通过多层迭代生成高度代表性特征的优点。然后通过结合分子子结构指纹信息构建特征描述符,并将其输入旋转森林进行准确预测。五折交叉验证的实验结果表明,该方法在金标准数据集(酶、离子通道、G蛋白偶联受体和核受体)上分别取得了0.9414、0.9116、0.8669和0.8056的准确率,性能优越。我们进一步通过在同一数据集上与其他特征提取算法、最先进的分类器和其他优秀方法进行比较,全面探索了所提出方法的性能。出色的比较结果表明,该方法在预测药物-靶点相互作用时具有很强的竞争力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验