Suppr超能文献

一种使用加权极限学习机和加速机器人特征预测药物-靶点相互作用的高效计算方法。

An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.

作者信息

An Ji-Yong, Meng Fan-Rong, Yan Zi-Ji

机构信息

Engineering Research Center of Mine Digitalization (China University of Mining and Technology), Ministry of Education, Xuzhou, China.

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China.

出版信息

BioData Min. 2021 Jan 20;14(1):3. doi: 10.1186/s13040-021-00242-1.

Abstract

BACKGROUND

Prediction of novel Drug-Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target.

RESULTS

In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain.

CONCLUSION

The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.

摘要

背景

预测新型药物 - 靶点相互作用(DTIs)在发现新的候选药物和寻找新的作用靶点蛋白方面发挥着重要作用。鉴于实验方法既耗时又昂贵。因此,如何开发高效的计算方法来准确预测药物与靶点之间的潜在关联是一项具有挑战性的任务。

结果

在本文中,我们提出了一种基于药物指纹和蛋白质进化信息的名为WELM - SURF的新型计算方法来识别DTIs。更具体地说,为了利用蛋白质序列特征,应用位置特异性评分矩阵(PSSM)来捕获蛋白质进化信息,并采用加速鲁棒特征(SURF)从PSSM中提取序列关键特征。对于药物指纹,分子子结构指纹的化学结构被用作特征向量来表示药物。考虑到加权极限学习机(WELM)具有训练时间短、泛化能力强,最重要的是能够通过优化权重矩阵的损失函数来高效执行分类的优点。因此,使用WELM分类器基于提取的特征进行分类以预测DTIs。通过使用五折交叉验证测试在酶、离子通道、G蛋白偶联受体(GPCRs)和核受体数据集上的实验验证来评估WELM - SURF模型的性能。WELM - SURF在酶、离子通道、GPCRs和核受体数据集上分别获得了93.54%、90.58%、85.43%和77.45%的平均准确率。我们还在酶和离子通道数据集上,将我们的性能与极限学习机(ELM)、最先进的支持向量机(SVM)以及在四个数据集上的其他现有方法进行了比较。通过与实验结果比较,WELM - SURF的性能在该领域明显优于ELM、SVM和其他先前的方法。

结论

结果表明,所提出的WELM - SURF模型能够高精度且稳健地预测DTIs。预计WELM - SURF方法是一种有用的计算工具,有助于广泛开展与DTIs预测相关的生物信息学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feb4/7816443/035a06a7bd38/13040_2021_242_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验