Suppr超能文献

基于计算机的同伴提名数据收集方法:效用、实践与实证支持

Computer-Based Methods for Collecting Peer Nomination Data: Utility, Practice, and Empirical Support.

作者信息

van den Berg Yvonne H M, Gommans Rob

机构信息

Radboud University.

Utrecht University.

出版信息

New Dir Child Adolesc Dev. 2017 Sep;2017(157):61-73. doi: 10.1002/cad.20207.

Abstract

New technologies have led to several major advances in psychological research over the past few decades. Peer nomination research is no exception. Thanks to these technological innovations, computerized data collection is becoming more common in peer nomination research. However, computer-based assessment is more than simply programming the questionnaire and asking respondents to fill it in on computers. In this chapter the advantages and challenges of computer-based assessments are discussed. In addition, a list of practical recommendations and considerations is provided to inform researchers on how computer-based methods can be applied to their own research. Although the focus is on the collection of peer nomination data in particular, many of the requirements, considerations, and implications are also relevant for those who consider the use of other sociometric assessment methods (e.g., paired comparisons, peer ratings, peer rankings) or computer-based assessments in general.

摘要

在过去几十年里,新技术推动了心理学研究取得多项重大进展。同伴提名研究也不例外。得益于这些技术创新,计算机化数据收集在同伴提名研究中越来越普遍。然而,基于计算机的评估不仅仅是将问卷编程并要求受访者在计算机上填写。本章将讨论基于计算机评估的优势和挑战。此外,还提供了一系列实用建议和注意事项,以告知研究人员如何将基于计算机的方法应用于他们自己的研究。尽管重点特别放在同伴提名数据的收集上,但许多要求、注意事项和影响对于那些考虑使用其他社会计量评估方法(如配对比较、同伴评价、同伴排名)或一般基于计算机评估的人也同样适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验