Salem Shaimaa M, Weidenbach Stevi, Rohr Jürgen
Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, United States.
ACS Chem Biol. 2017 Oct 20;12(10):2529-2534. doi: 10.1021/acschembio.7b00453. Epub 2017 Sep 13.
Glycosyltransferases are key enzymes involved in the biosynthesis of valuable natural products providing an excellent drug-tailoring tool. Herein, we report the identification of two cooperative glycosyltransferases from the sqn gene cluster directing the biosynthesis of saquayamycins in Streptomyces sp. KY40-1: SqnG1 and SqnG2. Gene inactivation of sqnG1 leads to 50-fold decrease in saquayamycin production, while inactivation of sqnG2 leads to complete production loss, suggesting that SqnG2 acts as dual O- and C-glycosyltransferase. Gene inactivation of a third putative glycosyltransferase-encoding gene, sqnG3, does not affect saquayamycin production in a major way, suggesting that SqnG3 has no or a supportive role in glycosylation. The data indicate that SqnG1 and SqnG2 are solely and possibly cooperatively responsible for the sugar diversity observed in saquayamycins 1-7. This is the first evidence of a glycosyltransferase system showing codependence to achieve dual O- and C-glycosyltransferase activity, utilizing NDP-activated d-olivose, l-rhodinose, as well as an unusual amino sugar, presumably 3,6-dideoxy-l-idosamine.
糖基转移酶是参与有价值天然产物生物合成的关键酶,是一种出色的药物定制工具。在此,我们报告了从链霉菌属KY40-1中指导萨夸霉素生物合成的sqn基因簇中鉴定出两种协同作用的糖基转移酶:SqnG1和SqnG2。sqnG1基因失活导致萨夸霉素产量下降50倍,而sqnG2基因失活导致产量完全丧失,这表明SqnG2作为双功能的O-和C-糖基转移酶发挥作用。第三个假定的糖基转移酶编码基因sqnG3的基因失活对萨夸霉素产量没有重大影响,这表明SqnG3在糖基化过程中没有作用或起支持作用。数据表明,SqnG1和SqnG2单独且可能协同负责萨夸霉素1-7中观察到的糖多样性。这是首次有证据表明糖基转移酶系统存在相互依赖关系,以利用NDP活化的D-橄榄糖、L-罗迪糖以及一种不寻常的氨基糖(可能是3,6-二脱氧-L-艾杜糖胺)实现双功能的O-和C-糖基转移酶活性。