Suppr超能文献

利用胸部计算机断层扫描中的深度学习对吸烟者进行疾病分期和预后评估。

Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography.

机构信息

1 Sierra Research, Alicante, Spain.

2 Applied Chest Imaging Laboratory, Department of Radiology, and.

出版信息

Am J Respir Crit Care Med. 2018 Jan 15;197(2):193-203. doi: 10.1164/rccm.201705-0860OC.

Abstract

RATIONALE

Deep learning is a powerful tool that may allow for improved outcome prediction.

OBJECTIVES

To determine if deep learning, specifically convolutional neural network (CNN) analysis, could detect and stage chronic obstructive pulmonary disease (COPD) and predict acute respiratory disease (ARD) events and mortality in smokers.

METHODS

A CNN was trained using computed tomography scans from 7,983 COPDGene participants and evaluated using 1,000 nonoverlapping COPDGene participants and 1,672 ECLIPSE participants. Logistic regression (C statistic and the Hosmer-Lemeshow test) was used to assess COPD diagnosis and ARD prediction. Cox regression (C index and the Greenwood-Nam-D'Agnostino test) was used to assess mortality.

MEASUREMENTS AND MAIN RESULTS

In COPDGene, the C statistic for the detection of COPD was 0.856. A total of 51.1% of participants in COPDGene were accurately staged and 74.95% were within one stage. In ECLIPSE, 29.4% were accurately staged and 74.6% were within one stage. In COPDGene and ECLIPSE, the C statistics for ARD events were 0.64 and 0.55, respectively, and the Hosmer-Lemeshow P values were 0.502 and 0.380, respectively, suggesting no evidence of poor calibration. In COPDGene and ECLIPSE, CNN predicted mortality with fair discrimination (C indices, 0.72 and 0.60, respectively), and without evidence of poor calibration (Greenwood-Nam-D'Agnostino P values, 0.307 and 0.331, respectively).

CONCLUSIONS

A deep-learning approach that uses only computed tomography imaging data can identify those smokers who have COPD and predict who are most likely to have ARD events and those with the highest mortality. At a population level CNN analysis may be a powerful tool for risk assessment.

摘要

背景

深度学习是一种强大的工具,它可能可以提高结果预测的准确性。

目的

确定深度学习,特别是卷积神经网络(CNN)分析,是否可以检测和分期慢性阻塞性肺疾病(COPD),并预测吸烟者的急性呼吸疾病(ARD)事件和死亡率。

方法

使用 COPDGene 项目的 7983 名 COPD 患者的 CT 扫描数据训练一个 CNN,并使用 1000 名 COPDGene 项目和 1672 名 ECLIPSE 项目的非重叠参与者的数据进行评估。使用逻辑回归(C 统计量和 Hosmer-Lemeshow 检验)评估 COPD 诊断和 ARD 预测。使用 Cox 回归(C 指数和 Greenwood-Nam-D'Agnostino 检验)评估死亡率。

测量和主要结果

在 COPDGene 中,检测 COPD 的 C 统计量为 0.856。COPDGene 中共有 51.1%的参与者被准确分期,74.95%的参与者在一个分期内。在 ECLIPSE 中,29.4%的参与者被准确分期,74.6%的参与者在一个分期内。在 COPDGene 和 ECLIPSE 中,ARD 事件的 C 统计量分别为 0.64 和 0.55,Hosmer-Lemeshow P 值分别为 0.502 和 0.380,表明没有证据表明校准不良。在 COPDGene 和 ECLIPSE 中,CNN 预测死亡率的区分度尚可(C 指数分别为 0.72 和 0.60),且没有证据表明校准不良(Greenwood-Nam-D'Agnostino P 值分别为 0.307 和 0.331)。

结论

一种仅使用 CT 成像数据的深度学习方法可以识别出那些患有 COPD 的吸烟者,并预测哪些人最有可能发生 ARD 事件以及哪些人死亡率最高。在人群水平上,CNN 分析可能是一种强大的风险评估工具。

相似文献

1
Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography.
Am J Respir Crit Care Med. 2018 Jan 15;197(2):193-203. doi: 10.1164/rccm.201705-0860OC.
2
Prediction of disease severity in COPD: a deep learning approach for anomaly-based quantitative assessment of chest CT.
Eur Radiol. 2024 Jul;34(7):4379-4392. doi: 10.1007/s00330-023-10540-3. Epub 2023 Dec 27.
5
Deep Learning Enables Automatic Classification of Emphysema Pattern at CT.
Radiology. 2020 Feb;294(2):434-444. doi: 10.1148/radiol.2019191022. Epub 2019 Dec 3.
8
Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease.
Sci Rep. 2021 Jul 26;11(1):15144. doi: 10.1038/s41598-021-94535-4.
9
10
Relationship between Emphysema Progression at CT and Mortality in Ever-Smokers: Results from the COPDGene and ECLIPSE Cohorts.
Radiology. 2021 Apr;299(1):222-231. doi: 10.1148/radiol.2021203531. Epub 2021 Feb 16.

引用本文的文献

1
Diagnosis and Severity Assessment of COPD Based on Machine Learning of Chest CT Images.
Int J Chron Obstruct Pulmon Dis. 2025 Aug 14;20:2853-2867. doi: 10.2147/COPD.S528988. eCollection 2025.
2
[Pulmonary Digital Twins].
Open Respir Arch. 2024 Dec 12;6(Suppl 2):100394. doi: 10.1016/j.opresp.2024.100394. eCollection 2024 Oct.
9
Unveiling the Influence of AI on Advancements in Respiratory Care: Narrative Review.
Interact J Med Res. 2024 Dec 20;13:e57271. doi: 10.2196/57271.

本文引用的文献

1
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.
Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.
2
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
3
Increasing use of CTPA for the investigation of suspected pulmonary embolism.
Postgrad Med. 2017 Mar;129(2):193-197. doi: 10.1080/00325481.2017.1281084. Epub 2017 Jan 20.
4
AUTOMATED AGATSTON SCORE COMPUTATION IN A LARGE DATASET OF NON ECG-GATED CHEST COMPUTED TOMOGRAPHY.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:53-57. doi: 10.1109/ISBI.2016.7493209. Epub 2016 Jun 16.
7
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
8
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
9
Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks.
IEEE Trans Med Imaging. 2016 May;35(5):1160-1169. doi: 10.1109/TMI.2016.2536809. Epub 2016 Mar 1.
10
Association Between Interstitial Lung Abnormalities and All-Cause Mortality.
JAMA. 2016 Feb 16;315(7):672-81. doi: 10.1001/jama.2016.0518.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验