1 Sierra Research, Alicante, Spain.
2 Applied Chest Imaging Laboratory, Department of Radiology, and.
Am J Respir Crit Care Med. 2018 Jan 15;197(2):193-203. doi: 10.1164/rccm.201705-0860OC.
Deep learning is a powerful tool that may allow for improved outcome prediction.
To determine if deep learning, specifically convolutional neural network (CNN) analysis, could detect and stage chronic obstructive pulmonary disease (COPD) and predict acute respiratory disease (ARD) events and mortality in smokers.
A CNN was trained using computed tomography scans from 7,983 COPDGene participants and evaluated using 1,000 nonoverlapping COPDGene participants and 1,672 ECLIPSE participants. Logistic regression (C statistic and the Hosmer-Lemeshow test) was used to assess COPD diagnosis and ARD prediction. Cox regression (C index and the Greenwood-Nam-D'Agnostino test) was used to assess mortality.
In COPDGene, the C statistic for the detection of COPD was 0.856. A total of 51.1% of participants in COPDGene were accurately staged and 74.95% were within one stage. In ECLIPSE, 29.4% were accurately staged and 74.6% were within one stage. In COPDGene and ECLIPSE, the C statistics for ARD events were 0.64 and 0.55, respectively, and the Hosmer-Lemeshow P values were 0.502 and 0.380, respectively, suggesting no evidence of poor calibration. In COPDGene and ECLIPSE, CNN predicted mortality with fair discrimination (C indices, 0.72 and 0.60, respectively), and without evidence of poor calibration (Greenwood-Nam-D'Agnostino P values, 0.307 and 0.331, respectively).
A deep-learning approach that uses only computed tomography imaging data can identify those smokers who have COPD and predict who are most likely to have ARD events and those with the highest mortality. At a population level CNN analysis may be a powerful tool for risk assessment.
深度学习是一种强大的工具,它可能可以提高结果预测的准确性。
确定深度学习,特别是卷积神经网络(CNN)分析,是否可以检测和分期慢性阻塞性肺疾病(COPD),并预测吸烟者的急性呼吸疾病(ARD)事件和死亡率。
使用 COPDGene 项目的 7983 名 COPD 患者的 CT 扫描数据训练一个 CNN,并使用 1000 名 COPDGene 项目和 1672 名 ECLIPSE 项目的非重叠参与者的数据进行评估。使用逻辑回归(C 统计量和 Hosmer-Lemeshow 检验)评估 COPD 诊断和 ARD 预测。使用 Cox 回归(C 指数和 Greenwood-Nam-D'Agnostino 检验)评估死亡率。
在 COPDGene 中,检测 COPD 的 C 统计量为 0.856。COPDGene 中共有 51.1%的参与者被准确分期,74.95%的参与者在一个分期内。在 ECLIPSE 中,29.4%的参与者被准确分期,74.6%的参与者在一个分期内。在 COPDGene 和 ECLIPSE 中,ARD 事件的 C 统计量分别为 0.64 和 0.55,Hosmer-Lemeshow P 值分别为 0.502 和 0.380,表明没有证据表明校准不良。在 COPDGene 和 ECLIPSE 中,CNN 预测死亡率的区分度尚可(C 指数分别为 0.72 和 0.60),且没有证据表明校准不良(Greenwood-Nam-D'Agnostino P 值分别为 0.307 和 0.331)。
一种仅使用 CT 成像数据的深度学习方法可以识别出那些患有 COPD 的吸烟者,并预测哪些人最有可能发生 ARD 事件以及哪些人死亡率最高。在人群水平上,CNN 分析可能是一种强大的风险评估工具。