文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CT 图像中的肺结节检测:使用多视图卷积网络减少假阳性。

Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks.

出版信息

IEEE Trans Med Imaging. 2016 May;35(5):1160-1169. doi: 10.1109/TMI.2016.2536809. Epub 2016 Mar 1.


DOI:10.1109/TMI.2016.2536809
PMID:26955024
Abstract

We propose a novel Computer-Aided Detection (CAD) system for pulmonary nodules using multi-view convolutional networks (ConvNets), for which discriminative features are automatically learnt from the training data. The network is fed with nodule candidates obtained by combining three candidate detectors specifically designed for solid, subsolid, and large nodules. For each candidate, a set of 2-D patches from differently oriented planes is extracted. The proposed architecture comprises multiple streams of 2-D ConvNets, for which the outputs are combined using a dedicated fusion method to get the final classification. Data augmentation and dropout are applied to avoid overfitting. On 888 scans of the publicly available LIDC-IDRI dataset, our method reaches high detection sensitivities of 85.4% and 90.1% at 1 and 4 false positives per scan, respectively. An additional evaluation on independent datasets from the ANODE09 challenge and DLCST is performed. We showed that the proposed multi-view ConvNets is highly suited to be used for false positive reduction of a CAD system.

摘要

我们提出了一种新的基于多视图卷积网络(ConvNets)的肺结节计算机辅助检测(CAD)系统,该系统能够从训练数据中自动学习判别特征。该网络以通过组合三个专门设计用于实性、亚实性和大结节的候选检测算法得到的结节候选物作为输入。对于每个候选物,从不同定向平面提取一组 2-D 补丁。所提出的架构包括多个 2-D ConvNets 流,通过专用融合方法对输出进行组合,以获得最终分类。应用数据增强和随机失活来避免过拟合。在公开的 LIDC-IDRI 数据集的 888 个扫描中,我们的方法在每个扫描 1 个和 4 个假阳性的情况下,达到了 85.4%和 90.1%的高检测灵敏度。还在 ANODE09 挑战赛和 DLCST 的独立数据集上进行了额外的评估。结果表明,所提出的多视图 ConvNets 非常适合用于 CAD 系统的假阳性减少。

相似文献

[1]
Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks.

IEEE Trans Med Imaging. 2016-3-1

[2]
A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.

Med Image Anal. 2010-2-19

[3]
Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge.

Med Image Anal. 2017-7-13

[4]
Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images.

Med Image Anal. 2013-12-17

[5]
Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images.

Comput Math Methods Med. 2016

[6]
Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection.

IEEE Trans Med Imaging. 2020-3

[7]
Computer-aided detection of lung nodules using outer surface features.

Biomed Mater Eng. 2015

[8]
Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.

Eur Radiol. 2016-7

[9]
Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection.

IEEE Trans Biomed Eng. 2017-7

[10]
Multi-scale Convolutional Neural Networks for Lung Nodule Classification.

Inf Process Med Imaging. 2015

引用本文的文献

[1]
A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology.

Bioengineering (Basel). 2025-7-31

[2]
CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound.

medRxiv. 2025-7-22

[3]
Artificial Intelligence in Thoracic Surgery: Transforming Diagnostics, Treatment, and Patient Outcomes.

Diagnostics (Basel). 2025-7-8

[4]
Integrative habitat analysis and multi-instance deep learning for predictive model of PD-1/PD-L1 immunotherapy efficacy in NSCLC patients: a dual-center retrospective study.

BMC Med Imaging. 2025-7-17

[5]
Enhanced pulmonary nodule detection with U-Net, YOLOv8, and swin transformer.

BMC Med Imaging. 2025-7-1

[6]
A multi-view CNN model to predict resolving of new lung nodules on follow-up low-dose chest CT.

Insights Imaging. 2025-6-27

[7]
Deep-Learning-Based Computer-Aided Grading of Cervical Spinal Stenosis from MR Images: Accuracy and Clinical Alignment.

Bioengineering (Basel). 2025-6-1

[8]
CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound.

IEEE Trans Med Imaging. 2025-5-15

[9]
Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study.

Yonsei Med J. 2025-4

[10]
IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT.

MethodsX. 2025-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索