IEEE Trans Med Imaging. 2016 May;35(5):1160-1169. doi: 10.1109/TMI.2016.2536809. Epub 2016 Mar 1.
We propose a novel Computer-Aided Detection (CAD) system for pulmonary nodules using multi-view convolutional networks (ConvNets), for which discriminative features are automatically learnt from the training data. The network is fed with nodule candidates obtained by combining three candidate detectors specifically designed for solid, subsolid, and large nodules. For each candidate, a set of 2-D patches from differently oriented planes is extracted. The proposed architecture comprises multiple streams of 2-D ConvNets, for which the outputs are combined using a dedicated fusion method to get the final classification. Data augmentation and dropout are applied to avoid overfitting. On 888 scans of the publicly available LIDC-IDRI dataset, our method reaches high detection sensitivities of 85.4% and 90.1% at 1 and 4 false positives per scan, respectively. An additional evaluation on independent datasets from the ANODE09 challenge and DLCST is performed. We showed that the proposed multi-view ConvNets is highly suited to be used for false positive reduction of a CAD system.
我们提出了一种新的基于多视图卷积网络(ConvNets)的肺结节计算机辅助检测(CAD)系统,该系统能够从训练数据中自动学习判别特征。该网络以通过组合三个专门设计用于实性、亚实性和大结节的候选检测算法得到的结节候选物作为输入。对于每个候选物,从不同定向平面提取一组 2-D 补丁。所提出的架构包括多个 2-D ConvNets 流,通过专用融合方法对输出进行组合,以获得最终分类。应用数据增强和随机失活来避免过拟合。在公开的 LIDC-IDRI 数据集的 888 个扫描中,我们的方法在每个扫描 1 个和 4 个假阳性的情况下,达到了 85.4%和 90.1%的高检测灵敏度。还在 ANODE09 挑战赛和 DLCST 的独立数据集上进行了额外的评估。结果表明,所提出的多视图 ConvNets 非常适合用于 CAD 系统的假阳性减少。
IEEE Trans Med Imaging. 2016-3-1
Med Image Anal. 2010-2-19
Med Image Anal. 2013-12-17
Comput Math Methods Med. 2016
Biomed Mater Eng. 2015
IEEE Trans Biomed Eng. 2017-7
Inf Process Med Imaging. 2015
Bioengineering (Basel). 2025-7-31
Diagnostics (Basel). 2025-7-8
BMC Med Imaging. 2025-7-1
Insights Imaging. 2025-6-27
Bioengineering (Basel). 2025-6-1
IEEE Trans Med Imaging. 2025-5-15