Gookin Sara, Min Mingwei, Phadke Harsha, Chung Mingyu, Moser Justin, Miller Iain, Carter Dylan, Spencer Sabrina L
Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado, United States of America.
Department of Electrical, Computer & Energy Engineering, University of Colorado-Boulder, Boulder, Colorado, United States of America.
PLoS Biol. 2017 Sep 11;15(9):e2003268. doi: 10.1371/journal.pbio.2003268. eCollection 2017 Sep.
The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence.
细胞周期领域已经确定了驱动细胞周期的核心调节因子,但我们尚不清楚这些调节因子在细胞周期进程与细胞周期退出过程中的动态变化图谱。在此,我们利用对细胞周期蛋白依赖性激酶2(CDK2)活性进行的单细胞延时显微镜观察,随后进行终点免疫荧光检测和计算细胞同步化,以确定异步循环的人类细胞中关键细胞周期蛋白的时间动态变化。我们发现,在活跃增殖(CDK2增加)与自发静止(CDK2低)的细胞中,核心细胞周期蛋白存在几种意想不到的模式,包括细胞周期蛋白D1,我们发现其在自发静止细胞中的水平高于增殖细胞。我们还鉴定出了一些蛋白质,其浓度会随着细胞静止时间的延长而稳步增加或减少,这表明存在一个连续的静止深度。因此,我们的单细胞测量通过表征增殖与静止过程中的蛋白质动态变化,为该领域提供了丰富的资源。