Suppr超能文献

临床叙述的广泛信息表示方案设计

Design of an extensive information representation scheme for clinical narratives.

作者信息

Deléger Louise, Campillos Leonardo, Ligozat Anne-Laure, Névéol Aurélie

机构信息

French National Institute for Agricultural Research (INRA), Domaine de Vilvert, Jouy en Josas, Paris, 78352, France.

LIMSI, CNRS, Université Paris - Saclay, Rue John von Neumann, Orsay, 91405, France.

出版信息

J Biomed Semantics. 2017 Sep 11;8(1):37. doi: 10.1186/s13326-017-0135-z.

Abstract

BACKGROUND

Knowledge representation frameworks are essential to the understanding of complex biomedical processes, and to the analysis of biomedical texts that describe them. Combined with natural language processing (NLP), they have the potential to contribute to retrospective studies by unlocking important phenotyping information contained in the narrative content of electronic health records (EHRs). This work aims to develop an extensive information representation scheme for clinical information contained in EHR narratives, and to support secondary use of EHR narrative data to answer clinical questions.

METHODS

We review recent work that proposed information representation schemes and applied them to the analysis of clinical narratives. We then propose a unifying scheme that supports the extraction of information to address a large variety of clinical questions.

RESULTS

We devised a new information representation scheme for clinical narratives that comprises 13 entities, 11 attributes and 37 relations. The associated annotation guidelines can be used to consistently apply the scheme to clinical narratives and are https://cabernet.limsi.fr/annotation_guide_for_the_merlot_french_clinical_corpus-Sept2016.pdf .

CONCLUSION

The information scheme includes many elements of the major schemes described in the clinical natural language processing literature, as well as a uniquely detailed set of relations.

摘要

背景

知识表示框架对于理解复杂的生物医学过程以及分析描述这些过程的生物医学文本至关重要。与自然语言处理(NLP)相结合,它们有潜力通过挖掘电子健康记录(EHR)叙述内容中包含的重要表型信息,为回顾性研究做出贡献。这项工作旨在为EHR叙述中包含的临床信息开发一种广泛的信息表示方案,并支持EHR叙述数据的二次使用以回答临床问题。

方法

我们回顾了最近提出信息表示方案并将其应用于临床叙述分析的工作。然后我们提出了一种统一的方案,该方案支持提取信息以解决各种各样的临床问题。

结果

我们为临床叙述设计了一种新的信息表示方案,该方案包括13个实体、11个属性和37种关系。相关的注释指南可用于将该方案一致地应用于临床叙述,指南链接为https://cabernet.limsi.fr/annotation_guide_for_the_merlot_french_clinical_corpus-Sept2016.pdf

结论

该信息方案包含了临床自然语言处理文献中描述的主要方案的许多元素,以及一套独特而详细的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b26/5594525/4da8916c17e0/13326_2017_135_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验