Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10414-10419. doi: 10.1073/pnas.1701782114. Epub 2017 Sep 11.
Protein phosphorylation by cyclic AMP-dependent protein kinase (PKA) underlies key cellular processes, including sympathetic stimulation of heart cells, and potentiation of synaptic strength in neurons. Unrestrained PKA activity is pathological, and an enduring challenge is to understand how the activity of PKA catalytic subunits is directed in cells. We developed a light-activated cross-linking approach to monitor PKA subunit interactions with temporal precision in living cells. This enabled us to refute the recently proposed theory that PKA catalytic subunits remain tethered to regulatory subunits during cAMP elevation. Instead, we have identified other features of PKA signaling for reducing catalytic subunit diffusion and increasing recapture rate. Comprehensive quantitative immunoblotting of protein extracts from human embryonic kidney cells and rat organs reveals that regulatory subunits are always in large molar excess of catalytic subunits (average ∼17-fold). In the majority of organs tested, type II regulatory (RII) subunits were found to be the predominant PKA subunit. We also examined the architecture of PKA complexes containing RII subunits using cross-linking coupled to mass spectrometry. Quantitative comparison of cross-linking within a complex of RIIβ and Cβ, with or without the prototypical anchoring protein AKAP18α, revealed that the dimerization and docking domain of RIIβ is between its second cAMP binding domains. This architecture is compatible with anchored RII subunits directing the myristylated N terminus of catalytic subunits toward the membrane for release and recapture within the plane of the membrane.
蛋白磷酸化由环腺苷酸依赖性蛋白激酶(PKA)介导,是包括心脏细胞的交感刺激和神经元突触强度增强等关键细胞过程的基础。不受限制的 PKA 活性是病理性的,理解 PKA 催化亚基在细胞中的活性如何被定向一直是一个持久的挑战。我们开发了一种光激活交联方法,以在活细胞中实时精确监测 PKA 亚基相互作用。这使我们能够反驳最近提出的理论,即 cAMP 升高时 PKA 催化亚基仍然与调节亚基结合。相反,我们已经确定了 PKA 信号转导的其他特征,以减少催化亚基的扩散并增加再捕获率。来自人胚肾细胞和大鼠器官的蛋白质提取物的综合定量免疫印迹揭示,调节亚基总是以大得多的摩尔过量存在于催化亚基(平均约 17 倍)。在大多数测试的器官中,发现 II 型调节亚基(RII)是 PKA 的主要亚基。我们还使用交联结合质谱法研究了含有 RII 亚基的 PKA 复合物的结构。在 RIIβ 和 Cβ 的复合物内进行交联的定量比较,有或没有原型锚定蛋白 AKAP18α,表明 RIIβ 的二聚化和对接结构域位于其第二个 cAMP 结合结构域之间。这种结构与锚定的 RII 亚基将催化亚基的豆蔻酰化 N 端指向膜内用于释放和再捕获在膜平面内兼容。