Chen P, Pai Woei Wu, Chan Y-H, Takayama A, Xu C-Z, Karn A, Hasegawa S, Chou M Y, Mo S-K, Fedorov A-V, Chiang T-C
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801-3080, USA.
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, IL, 61801-2902, USA.
Nat Commun. 2017 Sep 11;8(1):516. doi: 10.1038/s41467-017-00641-1.
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe, despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe that challenges the current understanding of CDW formation.
二维材料是开发纳米级器件和系统的一个很有前景的平台。由于极端的量子限制和维度缩减,它们的物理性质可能与相应的三维材料有很大不同。在此,我们报告了一项从单层到块体极限的碲化钛(TiTe)研究。利用角分辨光电子能谱以及扫描隧道显微镜和能谱,我们观察到单层TiTe中出现了转变温度为92±3K的(2×2)电荷密度波序。在4.2K时还观察到费米能级处约28meV的赝能隙。令人惊讶的是,尽管该材料在块体中具有准二维性质,但在双层和多层TiTe中未观察到电荷密度波转变。单层中独特的电荷密度波现象提出了一些有趣的问题,对关于电荷密度波形成机制的主流观点构成了挑战。由于维度降低,二维材料的性质通常与其三维对应物不同。在此,作者们确定了单层TiTe中出现了一种独特的电荷密度波(CDW)序,这对当前对CDW形成的理解提出了挑战。