Suppr超能文献

在正常发育和自闭症的小鼠模型中,小脑皮层回路的成熟、精炼和血清素能调节。

Maturation, Refinement, and Serotonergic Modulation of Cerebellar Cortical Circuits in Normal Development and in Murine Models of Autism.

机构信息

Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy.

Department of Neuroscience, University of Torino, Torino, Italy.

出版信息

Neural Plast. 2017;2017:6595740. doi: 10.1155/2017/6595740. Epub 2017 Aug 15.

Abstract

The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.

摘要

小脑皮质回路的形成遵循不同的阶段,初始突触发生和随后的精细过程由多种机制指导。小脑皮质的细胞和突触组织的规律性使得能够对形成新突触和缩回多余突触的结构可塑性机制进行详细研究。为了实现单个 climbing fiber 对 Purkinje 细胞的单突触支配,涉及到几种信号,包括电活动、接触信号、同突触和异突触相互作用、钙瞬变、突触后受体和转导途径。5-羟色胺能投射在这个发育过程中起着重要作用,它作用于时间和空间调节的突触后受体,诱导和调节突触形成和成熟的阶段。在成年小脑皮质中,许多发育机制仍然存在,但发挥着不同的作用,例如在学习和小脑记忆痕迹形成过程中支持突触可塑性。这个过程中的任何阶段的功能障碍都可能导致小脑源性疾病,包括自闭症谱系障碍,但不限于运动缺陷。动物模型的最新证据将 Purkinje 细胞功能障碍与自闭症样症状联系起来,包括社交缺陷、刻板运动和通过发声进行种间交流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e819/5574313/3b691d6e90d3/NP2017-6595740.001.jpg

相似文献

3
Nicotinic receptor abnormalities in the cerebellar cortex in autism.
Brain. 2002 Jul;125(Pt 7):1483-95. doi: 10.1093/brain/awf160.
4
The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex.
Neurosci Biobehav Rev. 2012 Apr;36(4):1153-62. doi: 10.1016/j.neubiorev.2012.01.005. Epub 2012 Jan 28.
7
The Origin of Physiological Local mGluR1 Supralinear Ca Signals in Cerebellar Purkinje Neurons.
J Neurosci. 2020 Feb 26;40(9):1795-1809. doi: 10.1523/JNEUROSCI.2406-19.2020. Epub 2020 Jan 22.
8
Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.
PLoS Comput Biol. 2021 Feb 10;17(2):e1008670. doi: 10.1371/journal.pcbi.1008670. eCollection 2021 Feb.
10
Plasticity of cerebellar parallel fibers following developmental deficits in synaptic number.
Brain Res. 1985 May 6;333(2):369-73. doi: 10.1016/0006-8993(85)91595-1.

引用本文的文献

1
2
Hunchback activates Bicoid in Pair1 neurons to regulate synapse number and locomotor circuit function.
Curr Biol. 2022 Jun 6;32(11):2430-2441.e3. doi: 10.1016/j.cub.2022.04.025. Epub 2022 May 4.
3
An Autism-Associated Neuroligin-3 Mutation Affects Developmental Synapse Elimination in the Cerebellum.
Front Neural Circuits. 2021 Jun 28;15:676891. doi: 10.3389/fncir.2021.676891. eCollection 2021.
4
A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats.
Cell Biol Toxicol. 2021 Feb;37(1):129-149. doi: 10.1007/s10565-020-09572-y. Epub 2021 Jan 6.
6
Purkinje Cell Signaling Deficits in Animal Models of Ataxia.
Front Synaptic Neurosci. 2018 Apr 26;10:6. doi: 10.3389/fnsyn.2018.00006. eCollection 2018.
7
Missing the egocentric spatial reference: a blank on the map.
F1000Res. 2018 Feb 9;7:168. doi: 10.12688/f1000research.13675.1. eCollection 2018.

本文引用的文献

1
Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain.
Neurosci Bull. 2017 Apr;33(2):205-218. doi: 10.1007/s12264-017-0112-7. Epub 2017 Mar 7.
2
Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism.
J Neurosci Res. 2017 Oct;95(10):1965-1972. doi: 10.1002/jnr.24027. Epub 2017 Feb 2.
3
A GluD Coming-Of-Age Story.
Trends Neurosci. 2017 Mar;40(3):138-150. doi: 10.1016/j.tins.2016.12.004. Epub 2017 Jan 19.
5
Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse.
Front Synaptic Neurosci. 2016 Nov 3;8:35. doi: 10.3389/fnsyn.2016.00035. eCollection 2016.
6
Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs.
Trends Neurosci. 2016 Oct;39(10):656-667. doi: 10.1016/j.tins.2016.08.004. Epub 2016 Sep 13.
7
Clustered structural and functional plasticity of dendritic spines.
Brain Res Bull. 2017 Mar;129:18-22. doi: 10.1016/j.brainresbull.2016.09.008. Epub 2016 Sep 13.
8
Role of neuron-glia interactions in developmental synapse elimination.
Brain Res Bull. 2017 Mar;129:74-81. doi: 10.1016/j.brainresbull.2016.08.017. Epub 2016 Sep 4.
10
Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins.
PLoS One. 2016 Aug 12;11(8):e0158558. doi: 10.1371/journal.pone.0158558. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验