Gerbert David, Tegeder Petra
Ruprecht-Karls-Universität Heidelberg , Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
J Phys Chem Lett. 2017 Oct 5;8(19):4685-4690. doi: 10.1021/acs.jpclett.7b01897. Epub 2017 Sep 15.
Optically induced processes in organic materials are essential for light harvesting, switching, and sensor technologies. Here we studied the electronic properties of the tetracyanoquinodimethane(TCNQ)/Au(111) interface by using two-photon photoemission spectroscopy. For this interface we demonstrated the lack of charge-transfer interactions, but we found a significant increase in the sample work function due to UV-light illumination, while the electronic structure of the TCNQ-derived states remain unaffected. Thereby the work function of the interface can be tuned over a wide range via the photon dose. We assigned this to a photoinduced metal-to-molecule electron transfer creating negative ions. The electrons are bound by a small potential barrier. Thus thermal activation reverses the process resulting in the original work function value. The presented photoinduced charge transfer at the TCNQ/Au(111) interface can be used for continuous work function tuning across the substrate's work function, which can be applied in device-adapted hole-injection layers or organic UV-light sensors.
有机材料中的光诱导过程对于光捕获、光开关和传感器技术至关重要。在此,我们通过双光子光电子能谱研究了四氰基对苯二醌二甲烷(TCNQ)/金(111)界面的电子性质。对于该界面,我们证明了不存在电荷转移相互作用,但我们发现由于紫外光照射,样品的功函数显著增加,而源自TCNQ的态的电子结构保持不变。由此,界面的功函数可通过光子剂量在很宽的范围内进行调节。我们将此归因于光诱导的金属到分子的电子转移,从而产生负离子。电子被一个小的势垒束缚。因此,热激活会使该过程逆转,导致功函数恢复到原始值。所呈现的TCNQ/金(111)界面处的光诱导电荷转移可用于在整个衬底的功函数范围内进行连续的功函数调节,这可应用于适配器件的空穴注入层或有机紫外光传感器。