Suppr超能文献

预测方程对肥胖易感个体的能量需求估计过高。

Prediction Equations Overestimate the Energy Requirements More for Obesity-Susceptible Individuals.

机构信息

Department of Human Nutrition, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Nutrition Society of New Zealand, Whanganui 4543, New Zealand.

出版信息

Nutrients. 2017 Sep 13;9(9):1012. doi: 10.3390/nu9091012.

Abstract

Predictive equations to estimate resting metabolic rate (RMR) are often used in dietary counseling and by online apps to set energy intake goals for weight loss. It is critical to know whether such equations are appropriate for those susceptible to obesity. We measured RMR by indirect calorimetry after an overnight fast in 26 obesity susceptible (OSI) and 30 obesity resistant (ORI) individuals, identified using a simple 6-item screening tool. Predicted RMR was calculated using the FAO/WHO/UNU (Food and Agricultural Organisation/World Health Organisation/United Nations University), Oxford and Miflin-St Jeor equations. Absolute measured RMR did not differ significantly between OSI versus ORI (6339 vs. 5893 kJ·d, = 0.313). All three prediction equations over-estimated RMR for both OSI and ORI when measured RMR was ≤5000 kJ·d. For measured RMR ≤7000 kJ·d there was statistically significant evidence that the equations overestimate RMR to a greater extent for those classified as obesity susceptible with biases ranging between around 10% to nearly 30% depending on the equation. The use of prediction equations may overestimate RMR and energy requirements particularly in those who self-identify as being susceptible to obesity, which has implications for effective weight management.

摘要

预测静息代谢率 (RMR) 的方程常用于饮食咨询和在线应用程序中,以设定减肥的能量摄入目标。了解这些方程是否适用于易肥胖的人群至关重要。我们使用一种简单的 6 项筛查工具,在 26 名易肥胖 (OSI) 和 30 名抗肥胖 (ORI) 个体中,通过隔夜禁食后间接测热法测量 RMR。使用 FAO/WHO/UNU(联合国粮食及农业组织/世界卫生组织/联合国大学)、牛津和 Miflin-St Jeor 方程计算预测 RMR。OSI 与 ORI 之间的绝对实测 RMR 无显著差异(6339 与 5893 kJ·d, = 0.313)。当实测 RMR≤5000kJ·d 时,所有三种预测方程都高估了 OSI 和 ORI 的 RMR。对于实测 RMR≤7000kJ·d,有统计学证据表明,对于那些被归类为易肥胖的人,这些方程高估了 RMR,偏差范围在 10%到近 30%之间,具体取决于方程。预测方程的使用可能会高估 RMR 和能量需求,特别是在那些自我认定为易肥胖的人群中,这对有效的体重管理有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60b4/5622772/035697409317/nutrients-09-01012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验