Suppr超能文献

四种静息代谢率预测方程的准确性:性别、体重指数、年龄和种族/民族的影响。

Accuracy of four resting metabolic rate prediction equations: effects of sex, body mass index, age, and race/ethnicity.

机构信息

Department of Kinesiology, University of Massachusetts, United States.

出版信息

J Sci Med Sport. 2011 Jul;14(4):344-51. doi: 10.1016/j.jsams.2011.02.010. Epub 2011 Mar 31.

Abstract

OBJECTIVE

This study compared the accuracy of four commonly used RMR prediction equations to measured RMR obtained from the MedGem(®) metabolic analyzer.

DESIGN AND METHODS

Height, weight and RMR were measured in 362 healthy individuals [51% female; body mass index (BMI): 17.6-50.6 kg m(-2); ages: 18-60 years; 17.4% non-white]. Following a 4h fast, participants rested in the supine position after which RMR was measured. RMR was estimated using four commonly used prediction equations: Harris-Benedict, Mifflin-St. Jeor, Owen, and WHO/FAO/UNU. Accuracy was determined by calculating the percentage of predicted RMR values that were within ± 10% of measured RMR values. Main effects of sex, BMI, age, and race/ethnicity were assessed using repeated measures ANCOVAs.

RESULTS

For all participants combined, the Harris-Benedict, Mifflin, and WHO/FAU/UNU equations similarly predicted RMR values within ± 10% of measured RMR values (57.5, 56.4, and 55.2% of the sample, respectively). When participant data were stratified by sex, BMI, age, and race/ethnicity, the accuracy of each regression equation varied dramatically. The Harris-Benedict equation over-predicted RMR in 18-29 year olds. The Owen equation under-predicted RMR in both sexes, all three BMI categories, 18-49 year olds and White participants. The Mifflin under-predicted RMR in both sexes, normal weight individuals, 40-60 year olds, and non-Hispanic White participants. The WHO/FAO/UNU over-predicted RMR in males, overweight participants, and 50-60 year olds.

CONCLUSIONS

When examining the entire sample, the Harris-Benedict, Mifflin, and WHO/FAU/UNU equations yielded similar levels of agreement with the MedGem(®) measured RMR. However, clinical judgment and caution should be used when applying these prediction equations to special populations or small groups.

摘要

目的

本研究比较了四种常用静息代谢率预测方程与 MedGem(®)代谢分析仪测量的静息代谢率的准确性。

设计与方法

对 362 名健康个体(51%为女性;体重指数(BMI):17.6-50.6kg/m2;年龄:18-60 岁;17.4%为非白人)的身高、体重和静息代谢率进行了测量。禁食 4 小时后,参与者仰卧休息,随后测量静息代谢率。使用四种常用的预测方程估算静息代谢率:Harris-Benedict、Mifflin-St. Jeor、Owen 和 WHO/FAO/UNU。通过计算预测静息代谢率值与实测值的偏差在±10%范围内的百分比来确定准确性。采用重复测量方差分析评估性别、BMI、年龄和种族/民族的主要影响。

结果

对于所有合并的参与者,Harris-Benedict、Mifflin 和 WHO/FAO/UNU 方程同样预测的静息代谢率值与实测值的偏差在±10%范围内(分别为样本的 57.5%、56.4%和 55.2%)。当根据性别、BMI、年龄和种族/民族对参与者数据进行分层时,每个回归方程的准确性差异很大。Harris-Benedict 方程高估了 18-29 岁年轻人的静息代谢率。Owen 方程低估了两性、所有 BMI 类别、18-49 岁和白人参与者的静息代谢率。Mifflin 方程低估了两性、正常体重者、40-60 岁和非西班牙裔白人参与者的静息代谢率。WHO/FAO/UNU 方程高估了男性、超重参与者和 50-60 岁的静息代谢率。

结论

当检查整个样本时,Harris-Benedict、Mifflin 和 WHO/FAO/UNU 方程与 MedGem(®)测量的静息代谢率具有相似的一致性水平。然而,在将这些预测方程应用于特殊人群或小群体时,应谨慎使用并结合临床判断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验