Hong J S, Grimes L, Kanamatsu T, McGinty J F
Laboratory of Behavioral and Neurological Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.
Toxicology. 1987 Oct 30;46(2):141-57. doi: 10.1016/0300-483x(87)90124-7.
Kainic acid (KA), an excitatory neurotoxin, was used as a tool to study the metabolism of hippocampal opioid peptides and their functional role in the expression of wet-dog shakes (WDS). A single intracerebral injection of KA (1 microgram/rat) caused recurrent motor seizures lasting 3-6 h. During the convulsive period, native Met5-enkephalin-like (ME-LI) and dynorphin A(1-8)-like (DYN-LI) immunoreactivities in hippocampus decreased by 31 and 63%, respectively. By 24 h after dosing, the hippocampal opioid peptides had returned to control levels, and by 48 h ME-LI had increased 270% and DYN-LI 150%. Immunocytochemical analysis revealed that ME-LI and Leu5-enkephalin-like (LE-LI) immunostaining in the mossy fibers of dentate granule cells and the perforant-temporoammonic pathway had decreased visibly by 6 h and had increased markedly by 48 h following KA. A visible decrease in DYN-LI in mossy fiber axons within 6 h was followed by a substantial increase at 48 h. To determine whether the increases in hippocampal ME-LI reflected changes in ME biosynthesis, levels of mRNA coding for preproenkephalin (mRNAenk) and cryptic ME-LI cleaved by enzyme digestion from preproenkephalin were measured. Following the convulsive period (6 h), mRNAenk was 400% of control, and by 24 h, cryptic ME-LI was 300% of control. Increases in native and cryptic ME-LI and in mRNAenk were also noted in entorhinal cortex, but not in hypothalamus or uninjected striatum. Our data suggest that KA-induced seizures cause an increase in ME release, followed by a compensatory increase in ME biosynthesis in the hippocampus and entorhinal cortex. Several lines of evidence from this study have suggested that hippocampal enkephalins are intimately related to KA-elicited WDS. The shaking behavior was attenuated by pretreatment with naloxone or antisera against [Met5]-enkephalin. We also observed that KA-induced WDS can be mimicked by intrahippocampal injection of enkephalin-related peptides. Furthermore, this study demonstrated that intact dentate granule cells are essential for KA- and enkephalin-induced WDS, since a colchicine injection into the ventral hippocampus, which selectively destroys granule cells, abolished this behavior.