IPANEMA, CNRS , Ministère de la Culture, UVSQ, Université Paris-Saclay, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France.
Synchrotron SOLEIL , BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France.
Anal Chem. 2017 Oct 17;89(20):10819-10826. doi: 10.1021/acs.analchem.7b02202. Epub 2017 Sep 27.
Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280-350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Here we report the use of XRS at ∼6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. We show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.
碳化合物普遍存在,在许多系统中以多种化学形式存在,包括从文化遗产到古生物学的古代和历史材料。确定它们的形态不仅可以提供关于它们起源的独特信息,还可以阐明降解过程。基于同步加速器的 X 射线吸收近边结构(XANES)光谱在碳 K 边(280-350 eV)是一种非常强大的方法,可以探测碳形态。然而,软 X 射线的短穿透深度对样品类型、制备和分析环境施加了严格的限制。硬 X 射线探针,如 X 射线拉曼散射(XRS),可以克服许多这些困难。在这里,我们报告了使用约 6 keV 入射能量的 XRS 收集碳 K 边 XANES 数据并探测与文化遗产和自然历史相关的几个标本中有机碳的形态。这种方法可以在非破坏性、空气中进行测量,并通过确保主要信号贡献来自探测材料的大部分,从而避免表面污染,提供不受表面污染影响的信息。在给定的 X 射线能量下,使用大光子动量转移的背散射几何结构使 XRS 信号最大化,并增强与常规 XANES 相比的非偶极贡献,从而增强形态灵敏度。讨论了该技术的能力和局限性。我们表明,尽管其截面较小,但对于一系列系统,XRS 方法在实际实验条件下可以提供令人满意的信号。XRS 构成了傅里叶变换红外光谱(FT-IR)、拉曼光谱和常规 XANES 光谱的有力补充,克服了这些技术的一些局限性。