Stoop Ruedi, Jasa Tom, Uwate Yoko, Martignoli Stefan
Institute of Neuroinformatics University/ETH Zurich, Winterthurerstr. 190, 8057 Zurich Switzerland.
Sensors (Basel). 2007 Dec 14;7(12):3287-3298. doi: 10.3390/s7123287.
An important step towards understanding the working principles of the mammalian hearing sensor is the concept of an active cochlear amplifier. Theoretical arguments and physiological measurements suggest that the active cochlear amplifiers originate from systems close to a Hopf bifurcation. Efforts to model the mammalian hearing sensor on these grounds have, however, either had problems in reproducing sufficiently close essential aspects of the biological example (Magnasco, M.O. Phys. Rev. Lett. 90, 058101 (2003); Duke, T. & Jülicher, F. Phys. Rev. Lett. 90, 158101 (2003)), or required complicated spatially coupled differential equation systems that are unfeasible for transient signals (Kern, A. & Stoop, R. Phys. Rev. Lett. 91, 128101 (2003)). Here, we demonstrate a simple system of electronically coupled Hopf amplifiers that not only leads to the desired biological response behavior, but also has real-time capacity. The obtained electronic Hopf cochlea shares all salient signal processing features exhibited by the mammalian cochlea and thus provides a simple and efficient design of an artificial mammalian hearing sensor.
理解哺乳动物听觉传感器工作原理的一个重要步骤是有源耳蜗放大器的概念。理论论证和生理测量表明,有源耳蜗放大器源自接近霍普夫分岔的系统。然而,基于这些原理对哺乳动物听觉传感器进行建模的尝试,要么在重现生物实例足够接近的基本方面存在问题(马尼亚斯科,M.O.《物理评论快报》90,058101(2003年);杜克,T.和尤利希,F.《物理评论快报》90,158101(2003年)),要么需要复杂的空间耦合微分方程系统,这对于瞬态信号是不可行的(克恩,A.和施托普,R.《物理评论快报》91,128101(2003年))。在此,我们展示了一个简单的电子耦合霍普夫放大器系统,它不仅能产生所需的生物响应行为,还具有实时能力。所得到的电子霍普夫耳蜗具有哺乳动物耳蜗展示的所有显著信号处理特征,因此为人工哺乳动物听觉传感器提供了一种简单而有效的设计。