Suppr超能文献

改善循环肿瘤细胞计数与特征分析以预测一线化疗的转移性去势抵抗性前列腺癌(mCRPC)患者的预后。

Improving circulating tumor cells enumeration and characterization to predict outcome in first line chemotherapy mCRPC patients.

作者信息

León-Mateos Luis, Casas Helena, Abalo Alicia, Vieito María, Abreu Manuel, Anido Urbano, Gómez-Tato Antonio, López Rafael, Abal Miguel, Muinelo-Romay Laura

机构信息

Axencia Galega de Coñecemento en Saúde (ACIS), SERGAS, Santiago de Compostela, Spain.

Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.

出版信息

Oncotarget. 2017 May 19;8(33):54708-54721. doi: 10.18632/oncotarget.18025. eCollection 2017 Aug 15.

Abstract

INTRODUCTION

There is a critical need of new surrogate markers for improving the therapeutic selection and monitoring of metastatic prostate cancer patients. Nowadays clinical management of these patients is been driven by biochemical and clinical parameters without enough accuracy to allow a real personalized medicine. The present study was conducted to go insight the molecular profile of circulating tumor cells (CTCs) isolated from advanced metastatic castration-resistant prostate cancer (mCRPC) with the aim of identifying prognostic marker with potential utility for therapy selection and monitoring.

MATERIALS AND METHODS

CTCs isolation was carried out in peripheral blood samples from 29 mCRPC patients that undergo systemic chemotherapy based on taxanes (docetaxel/cabazitaxel) and 19 healthy controls using in parallel CellSearch and an alternative EpCAM-based immunoisolation followed by RT-qPCR analysis to characterize the CTC population. A panel of 17 genes related with prostate biology, hormone regulation, stem properties, tumor aggressiveness and taxanes responsiveness was analysed to identify an expression signature characterizing the CTCs.

RESULTS

Patients with ≥ 5 CTCs/7.5ml of peripheral blood at baseline and during the treatment showed lower progression free survival (PFS) and overall survival (OS). Changes of CTCs levels during the treatment were also associated with the patient's outcome. These results confirmed previous data obtained using CellSearch in mCRPC. In addition, we found a CTC profile mainly characterized by the expression of relevant genes for the hormone dependent regulation of PCa such as and together with genes strongly implicated in PCa progression and resistance development such as , , , and . Our gene-expression profiling also permitted the identification of valuable prognostic biomarkers. Thus, high levels of AR, CYP19 and GDF15 were associated with poor PFS rates while AR, GDF15 and BIRC5 were also found as reliable predictors of OS. Besides, a logistic model using KLK3 and BIRC5 showed a high specificity and sensitivity compared to CellSearch to discriminate patients with a more aggressive evolution.

CONCLUSIONS

The molecular characterization of CTCs from advanced mCRPC patients provided with a panel of specific biomarkers, including genes related to taxanes resistance, with a promising applicability as "liquid biopsy" for the management of these patients.

摘要

引言

迫切需要新的替代标志物来改善转移性前列腺癌患者的治疗选择和监测。目前,这些患者的临床管理由生化和临床参数驱动,但准确性不足,无法实现真正的个性化医疗。本研究旨在深入了解从晚期转移性去势抵抗性前列腺癌(mCRPC)中分离出的循环肿瘤细胞(CTC)的分子特征,以识别具有潜在治疗选择和监测效用的预后标志物。

材料与方法

对29例接受基于紫杉烷类(多西他赛/卡巴他赛)全身化疗的mCRPC患者和19例健康对照的外周血样本进行CTC分离,同时使用CellSearch和另一种基于EpCAM的免疫分离方法,随后进行RT-qPCR分析以表征CTC群体。分析了一组与前列腺生物学、激素调节、干细胞特性、肿瘤侵袭性和紫杉烷类反应性相关的17个基因,以确定表征CTC的表达特征。

结果

基线和治疗期间外周血中每7.5ml≥5个CTC的患者显示出较低的无进展生存期(PFS)和总生存期(OS)。治疗期间CTC水平的变化也与患者的预后相关。这些结果证实了先前在mCRPC中使用CellSearch获得的数据。此外,我们发现一种CTC特征,主要表现为与前列腺癌激素依赖性调节相关的相关基因的表达,如 和 ,以及与前列腺癌进展和耐药性发展密切相关的基因,如 、 、 、 和 。我们的基因表达谱分析还允许识别有价值的预后生物标志物。因此,AR、CYP19和GDF15的高水平与较差的PFS率相关,而AR、GDF15和BIRC5也被发现是OS的可靠预测指标。此外,与CellSearch相比,使用KLK3和BIRC5的逻辑模型在区分具有更侵袭性进展的患者方面显示出高特异性和敏感性。

结论

晚期mCRPC患者CTC的分子特征提供了一组特定的生物标志物,包括与紫杉烷类耐药相关的基因,作为“液体活检”在这些患者管理中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e2/5589615/1eadfcd57c6e/oncotarget-08-54708-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验