Suppr超能文献

理清头绪:评估样本生物量不均对DNA宏条形码分析的影响。

Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding.

作者信息

Elbrecht Vasco, Peinert Bianca, Leese Florian

机构信息

Aquatic Ecosystem Research Faculty of Biology University of Duisburg-Essen Essen Germany.

Centre for Water and Environmental Research (ZWU) Essen University of Duisburg-Essen Essen Germany.

出版信息

Ecol Evol. 2017 Jul 28;7(17):6918-6926. doi: 10.1002/ece3.3192. eCollection 2017 Sep.

Abstract

Environmental bulk samples often contain many different taxa that vary several orders of magnitude in biomass. This can be problematic in DNA metabarcoding and metagenomic high-throughput sequencing approaches, as large specimens contribute disproportionately high amounts of DNA template. Thus, a few specimens of high biomass will dominate the dataset, potentially leading to smaller specimens remaining undetected. Sorting of samples by specimen size (as a proxy for biomass) and balancing the amounts of tissue used per size fraction should improve detection rates, but this approach has not been systematically tested. Here, we explored the effects of size sorting on taxa detection using two freshwater macroinvertebrate bulk samples, collected from a low-mountain stream in Germany. Specimens were morphologically identified and sorted into three size classes (body size < 2.5 × 5, 5 × 10, and up to 10 × 20 mm). Tissue powder from each size category was extracted individually and pooled based on tissue weight to simulate samples that were not sorted by biomass ("Unsorted"). Additionally, size fractions were pooled so that each specimen contributed approximately equal amounts of biomass ("Sorted"). Mock samples were amplified using four different DNA metabarcoding primer sets targeting the Cytochrome c oxidase I (COI) gene. Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification of taxa compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the unsorted samples at the same sequencing depth. Our results imply that sequencing depth can be decreased approximately fivefold when sorting the samples into three size classes and pooling by specimen abundance. Even coarse size sorting can substantially improve taxa detection using DNA metabarcoding. While high-throughput sequencing will become more accessible and cheaper within the next years, sorting bulk samples by specimen biomass or size is a simple yet efficient method to reduce current sequencing costs.

摘要

环境总体样本通常包含许多不同的分类群,其生物量相差几个数量级。这在DNA宏条形码和宏基因组高通量测序方法中可能会造成问题,因为大型标本贡献的DNA模板量不成比例地高。因此,少数高生物量标本将主导数据集,可能导致较小的标本未被检测到。按标本大小(作为生物量的替代指标)对样本进行分类,并平衡每个大小级分所使用的组织量,应该可以提高检测率,但这种方法尚未得到系统测试。在这里,我们使用从德国一条低山溪流采集的两个淡水大型无脊椎动物总体样本,探讨了大小分类对分类群检测的影响。标本通过形态学鉴定,并分为三个大小类别(体长<2.5×5、5×10和最大10×20毫米)。每个大小类别的组织粉末单独提取,并根据组织重量合并,以模拟未按生物量分类的样本(“未分类”)。此外,将大小级分合并,以便每个标本贡献大致相等的生物量(“分类”)。使用四种不同的针对细胞色素c氧化酶I(COI)基因的DNA宏条形码引物组对模拟样本进行扩增。与未分类的完整样本处理相比,按大小对分类群进行分类并根据其丰度按比例合并,会导致分类群的扩增更加均匀。在相同测序深度下,分类样本比未分类样本多检测到30%的分类群。我们的结果表明,将样本分为三个大小类别并按标本丰度合并时,测序深度可以降低约五倍。即使是粗略的大小分类也可以显著提高使用DNA宏条形码的分类群检测率。虽然在未来几年高通量测序将变得更加普及和便宜,但按标本生物量或大小对总体样本进行分类是一种简单而有效的方法,可以降低当前的测序成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0d/5587478/e55d45fb5ece/ECE3-7-6918-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验