Suppr超能文献

相似文献

3
RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.
Plant Biotechnol J. 2012 Dec;10(9):1067-76. doi: 10.1111/j.1467-7652.2012.00734.x. Epub 2012 Aug 24.
6
RNAi-Based Gene Silencing in Sugarcane for Production of Biofuel.
Methods Mol Biol. 2021;2290:141-155. doi: 10.1007/978-1-0716-1323-8_10.
7
Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin.
Plant Mol Biol. 2021 May;106(1-2):173-192. doi: 10.1007/s11103-021-01136-w. Epub 2021 Mar 18.
10
Two-year field analysis of reduced recalcitrance transgenic switchgrass.
Plant Biotechnol J. 2014 Sep;12(7):914-24. doi: 10.1111/pbi.12195. Epub 2014 Apr 21.

引用本文的文献

2
Directed mutagenesis in fruit crops.
3 Biotech. 2025 Apr;15(4):104. doi: 10.1007/s13205-025-04268-8. Epub 2025 Mar 31.
3
RNAi and genome editing of sugarcane: Progress and prospects.
Plant J. 2025 Mar;121(5):e70048. doi: 10.1111/tpj.70048.
4
Comparison of genotyping assays for detection of targeted CRISPR/Cas mutagenesis in highly polyploid sugarcane.
Front Genome Ed. 2024 Dec 12;6:1505844. doi: 10.3389/fgeed.2024.1505844. eCollection 2024.
5
CRISPR/Cas technology: fueling the future of Biofuel production with sugarcane.
Funct Integr Genomics. 2024 Nov 4;24(6):205. doi: 10.1007/s10142-024-01487-9.
6
Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses.
Plants (Basel). 2024 Jun 24;13(13):1739. doi: 10.3390/plants13131739.
8
Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses.
Front Plant Sci. 2024 Mar 27;15:1369416. doi: 10.3389/fpls.2024.1369416. eCollection 2024.
9
overexpression increases syringyl lignin and improves saccharification in sugarcane leaves.
GM Crops Food. 2024 Dec 31;15(1):67-84. doi: 10.1080/21645698.2024.2325181. Epub 2024 Mar 20.
10
CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane.
Front Plant Sci. 2024 Jan 8;14:1331258. doi: 10.3389/fpls.2023.1331258. eCollection 2023.

本文引用的文献

2
Draft genome sequencing of the sugarcane hybrid SP80-3280.
F1000Res. 2017 Jun 9;6:861. doi: 10.12688/f1000research.11859.2. eCollection 2017.
3
Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes.
Nat Commun. 2016 Nov 16;7:13274. doi: 10.1038/ncomms13274.
4
Targeted modification of plant genomes for precision crop breeding.
Biotechnol J. 2017 Jan;12(1). doi: 10.1002/biot.201600173. Epub 2016 Oct 11.
7
ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions.
Plant Biotechnol J. 2017 Feb;15(2):207-216. doi: 10.1111/pbi.12603. Epub 2016 Aug 17.
8
Advancing Crop Transformation in the Era of Genome Editing.
Plant Cell. 2016 Jul;28(7):1510-20. doi: 10.1105/tpc.16.00196. Epub 2016 Jun 22.
10
BAC-Pool Sequencing and Assembly of 19 Mb of the Complex Sugarcane Genome.
Front Plant Sci. 2016 Mar 23;7:342. doi: 10.3389/fpls.2016.00342. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验