Suppr超能文献

无探头超声自由臂自动校准及在线校准评估

Phantomless Auto-Calibration and Online Calibration Assessment for a Tracked Freehand 2-D Ultrasound Probe.

出版信息

IEEE Trans Med Imaging. 2018 Jan;37(1):262-272. doi: 10.1109/TMI.2017.2750978. Epub 2017 Sep 11.

Abstract

This paper presents a method for automatically calibrating and assessing the calibration quality of an externally tracked 2-D ultrasound (US) probe by scanning arbitrary, natural tissues, as opposed a specialized calibration phantom as is the typical practice. A generative topic model quantifies the posterior probability of calibration parameters conditioned on local 2-D image features arising from a generic underlying substrate. Auto-calibration is achieved by identifying the maximum a-posteriori image-to-probe transform, and calibration quality is assessed online in terms of the posterior probability of the current image-to-probe transform. Both are closely linked to the 3-D point reconstruction error (PRE) in aligning feature observations arising from the same underlying physical structure in different US images. The method is of practical importance in that it operates simply by scanning arbitrary textured echogenic structures, e.g., in-vivo tissues in the context of the US-guided procedures, without requiring specialized calibration procedures or equipment. Observed data take the form of local scale-invariant features that can be extracted and fit to the model in near real-time. Experiments demonstrate the method on a public data set of in vivo human brain scans of 14 unique subjects acquired in the context of neurosurgery. Online calibration assessment can be performed at approximately 3 Hz for the US images of pixels. Auto-calibration achieves an internal mean PRE of 1.2 mm and a discrepancy of [2 mm, 6 mm] in comparison to the calibration via a standard phantom-based method.

摘要

本文提出了一种通过扫描任意自然组织而不是传统的专用校准体模来自动校准和评估外部跟踪二维超声(US)探头的方法。生成主题模型量化了校准参数的后验概率,这些参数与通用基础衬底上产生的局部二维图像特征有关。自动校准通过识别最大后验图像到探头转换来实现,并且在线根据当前图像到探头转换的后验概率来评估校准质量。这两者都与在不同 US 图像中来自同一基础物理结构的特征观测值的 3-D 点重建误差(PRE)密切相关。该方法在实践中非常重要,因为它只需简单地扫描任意纹理回声结构,例如在 US 引导手术过程中的体内组织,而无需专门的校准程序或设备。观测数据采用局部尺度不变特征的形式,可以在近实时提取并拟合到模型中。实验在神经外科背景下对 14 个独特受试者的 14 组公开活体人脑扫描数据集进行了演示。在线校准评估可以针对像素的 US 图像以大约 3 Hz 的频率进行。与基于标准体模的方法相比,自动校准实现了内部平均 PRE 为 1.2mm 且差值为 [2mm, 6mm]。

相似文献

1
Phantomless Auto-Calibration and Online Calibration Assessment for a Tracked Freehand 2-D Ultrasound Probe.
IEEE Trans Med Imaging. 2018 Jan;37(1):262-272. doi: 10.1109/TMI.2017.2750978. Epub 2017 Sep 11.
2
Probe calibration for freehand 3-D ultrasound.
Ultrasound Med Biol. 2003 Nov;29(11):1607-23. doi: 10.1016/s0301-5629(03)01012-3.
3
Beam calibration without a phantom for creating a 3-D freehand ultrasound system.
Ultrasound Med Biol. 2001 Nov;27(11):1557-66. doi: 10.1016/s0301-5629(01)00469-0.
4
Real-time freehand 3D ultrasound calibration.
Ultrasound Med Biol. 2008 Feb;34(2):239-51. doi: 10.1016/j.ultrasmedbio.2007.07.020. Epub 2007 Oct 23.
5
A review of calibration techniques for freehand 3-D ultrasound systems.
Ultrasound Med Biol. 2005 Feb;31(2):143-65. doi: 10.1016/j.ultrasmedbio.2004.11.001.
6
A review of calibration techniques for freehand 3-D ultrasound systems.
Ultrasound Med Biol. 2005 Apr;31(4):449-71. doi: 10.1016/j.ultrasmedbio.2004.11.015.
7
Accurate calibration method for 3D freehand ultrasound probe using virtual plane.
Med Phys. 2011 Dec;38(12):6710-20. doi: 10.1118/1.3663674.
8
A Novel Ultrasound Probe Spatial Calibration Method Using a Combined Phantom and Stylus.
Ultrasound Med Biol. 2020 Aug;46(8):2079-2089. doi: 10.1016/j.ultrasmedbio.2020.03.018. Epub 2020 May 21.
9
A closed-form differential formulation for ultrasound spatial calibration: multi-wedge phantom.
Ultrasound Med Biol. 2014 Sep;40(9):2231-43. doi: 10.1016/j.ultrasmedbio.2014.03.006. Epub 2014 Jun 7.
10
Temporal calibration of freehand three-dimensional ultrasound using image alignment.
Ultrasound Med Biol. 2005 Jul;31(7):919-27. doi: 10.1016/j.ultrasmedbio.2005.04.007.

引用本文的文献

2
Sensorless End-to-End Freehand 3-D Ultrasound Reconstruction With Physics-Guided Deep Learning.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1514-1525. doi: 10.1109/TUFFC.2024.3465214. Epub 2024 Nov 27.
3
Integrated multi-modality image-guided navigation for neurosurgery: open-source software platform using state-of-the-art clinical hardware.
Int J Comput Assist Radiol Surg. 2021 Aug;16(8):1347-1356. doi: 10.1007/s11548-021-02374-5. Epub 2021 May 3.
5
The Essential Role of Open Data and Software for the Future of Ultrasound-Based Neuronavigation.
Front Oncol. 2021 Feb 2;10:619274. doi: 10.3389/fonc.2020.619274. eCollection 2020.
7
Deformable multimodal registration for navigation in beating-heart cardiac surgery.
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):955-966. doi: 10.1007/s11548-019-01932-2. Epub 2019 Mar 19.

本文引用的文献

1
User-friendly freehand ultrasound calibration using Lego bricks and automatic registration.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1703-11. doi: 10.1007/s11548-016-1368-5. Epub 2016 Mar 16.
2
Scalable Nearest Neighbor Algorithms for High Dimensional Data.
IEEE Trans Pattern Anal Mach Intell. 2014 Nov;36(11):2227-40. doi: 10.1109/TPAMI.2014.2321376.
3
A closed-form differential formulation for ultrasound spatial calibration: multi-wedge phantom.
Ultrasound Med Biol. 2014 Sep;40(9):2231-43. doi: 10.1016/j.ultrasmedbio.2014.03.006. Epub 2014 Jun 7.
5
Efficient and robust model-to-image alignment using 3D scale-invariant features.
Med Image Anal. 2013 Apr;17(3):271-82. doi: 10.1016/j.media.2012.11.002. Epub 2012 Nov 29.
6
Online database of clinical MR and ultrasound images of brain tumors.
Med Phys. 2012 Jun;39(6):3253-61. doi: 10.1118/1.4709600.
7
Learning to estimate out-of-plane motion in ultrasound imagery of real tissue.
Med Image Anal. 2011 Apr;15(2):202-13. doi: 10.1016/j.media.2010.08.006. Epub 2010 Sep 18.
8
Three-dimensional ultrasound imaging.
Proc Inst Mech Eng H. 2010;224(2):193-223. doi: 10.1243/09544119JEIM586.
9
Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion.
IEEE Trans Pattern Anal Mach Intell. 2009 Sep;31(9):1567-81. doi: 10.1109/TPAMI.2008.233.
10
A statistical parts-based model of anatomical variability.
IEEE Trans Med Imaging. 2007 Apr;26(4):497-508. doi: 10.1109/TMI.2007.892510.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验