Suppr超能文献

一种基于统计部件的解剖变异模型。

A statistical parts-based model of anatomical variability.

作者信息

Toews Matthew, Arbel Tal

机构信息

Centre for Intelligent Machines, McGill University, Montreal, QC H3A 2A7, Canada.

出版信息

IEEE Trans Med Imaging. 2007 Apr;26(4):497-508. doi: 10.1109/TMI.2007.892510.

Abstract

In this paper, we present a statistical parts-based model (PBM) of appearance, applied to the problem of modeling intersubject anatomical variability in magnetic resonance (MR) brain images. In contrast to global image models such as the active appearance model (AAM), the PBM consists of a collection of localized image regions, referred to as parts, whose appearance, geometry and occurrence frequency are quantified statistically. The parts-based approach explicitly addresses the case where one-to-one correspondence does not exist between all subjects in a population due to anatomical differences, as model parts are not required to appear in all subjects. The model is constructed through a fully automatic machine learning algorithm, identifying image patterns that appear with statistical regularity in a large collection of subject images. Parts are represented by generic scale-invariant features, and the model can, therefore, be applied to a wide variety of image domains. Experimentation based on 2-D MR slices shows that a PBM learned from a set of 102 subjects can be robustly fit to 50 new subjects with accuracy comparable to 3 human raters. Additionally, it is shown that unlike global models such as the AAM, PBM fitting is stable in the presence of unexpected, local perturbation.

摘要

在本文中,我们提出了一种基于统计部件的外观模型(PBM),并将其应用于磁共振(MR)脑图像中主体间解剖变异性的建模问题。与主动外观模型(AAM)等全局图像模型不同,PBM由一组局部图像区域组成,这些区域被称为部件,其外观、几何形状和出现频率通过统计进行量化。基于部件的方法明确解决了由于解剖差异导致群体中所有主体之间不存在一一对应关系的情况,因为模型部件不需要在所有主体中出现。该模型通过一种全自动机器学习算法构建,识别在大量主体图像中以统计规律出现的图像模式。部件由通用的尺度不变特征表示,因此该模型可以应用于各种图像领域。基于二维MR切片的实验表明,从102个主体的集合中学习到的PBM能够稳健地拟合50个新主体,其准确性与3名人类评级者相当。此外,研究表明,与AAM等全局模型不同,PBM拟合在存在意外的局部扰动时是稳定的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验