Suppr超能文献

基于物理引导深度学习的无传感器端到端徒手三维超声重建

Sensorless End-to-End Freehand 3-D Ultrasound Reconstruction With Physics-Guided Deep Learning.

作者信息

Dou Yimeng, Mu Fangzhou, Li Yin, Varghese Tomy

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1514-1525. doi: 10.1109/TUFFC.2024.3465214. Epub 2024 Nov 27.

Abstract

Three-dimensional ultrasound (3-D US) imaging with freehand scanning is utilized in cardiac, obstetric, abdominal, and vascular examinations. While 3-D US using either a "wobbler" or "matrix" transducer suffers from a small field of view and low acquisition rates, freehand scanning offers significant advantages due to its ease of use. However, current 3-D US volumetric reconstruction methods with freehand sweeps are limited by imaging plane shifts along the scanning path, i.e., out-of-plane (OOP) motion. Prior studies have incorporated motion sensors attached to the transducer, which is cumbersome and inconvenient in a clinical setting. Recent work has introduced deep neural networks (DNNs) with 3-D convolutions to estimate the position of imaging planes from a series of input frames. These approaches, however, fall short for estimating OOP motion. The goal of this article is to bridge the gap by designing a novel, physics-inspired DNN for freehand 3-D US reconstruction without motion sensors, aiming to improve the reconstruction quality and, at the same time, to reduce computational resources needed for training and inference. To this end, we present our physics-guided learning-based prediction of pose information (PLPPI) model for 3-D freehand US reconstruction without 3-D convolution. PLPPI yields significantly more accurate reconstructions and offers a major reduction in computation time. It attains a performance increase in the double digits in terms of mean percentage error, with up to 106% speedup and 131% reduction in graphic processing unit (GPU) memory usage, when compared to the latest deep learning methods.

摘要

三维超声(3-D US)徒手扫描成像应用于心脏、产科、腹部和血管检查。虽然使用“摆动式”或“矩阵式”换能器的三维超声存在视野小和采集率低的问题,但徒手扫描因其使用方便而具有显著优势。然而,当前的三维超声徒手扫描容积重建方法受到沿扫描路径的成像平面偏移(即平面外(OOP)运动)的限制。先前的研究采用了附着在换能器上的运动传感器,这在临床环境中既繁琐又不方便。最近的工作引入了具有三维卷积的深度神经网络(DNN),以从一系列输入帧估计成像平面的位置。然而,这些方法在估计平面外运动方面存在不足。本文的目标是通过设计一种新颖的、受物理启发的无运动传感器的三维超声徒手重建深度神经网络来弥合这一差距,旨在提高重建质量,同时减少训练和推理所需的计算资源。为此,我们提出了用于三维超声徒手重建的基于物理引导学习的姿态信息预测(PLPPI)模型,该模型不使用三维卷积。PLPPI产生的重建结果明显更准确,并且显著减少了计算时间。与最新的深度学习方法相比,它在平均百分比误差方面实现了两位数的性能提升,加速高达106%,图形处理单元(GPU)内存使用减少131%。

相似文献

1
Sensorless End-to-End Freehand 3-D Ultrasound Reconstruction With Physics-Guided Deep Learning.基于物理引导深度学习的无传感器端到端徒手三维超声重建
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1514-1525. doi: 10.1109/TUFFC.2024.3465214. Epub 2024 Nov 27.
3
Development of three-dimensional power Doppler ultrasound imaging of fetoplacental vasculature.
Ultrasound Med Biol. 2001 Sep;27(9):1161-70. doi: 10.1016/s0301-5629(01)00409-4.
4
3D freehand ultrasound without external tracking using deep learning.基于深度学习的无外部追踪的 3D 自由式超声。
Med Image Anal. 2018 Aug;48:187-202. doi: 10.1016/j.media.2018.06.003. Epub 2018 Jun 15.
8
Deep learning-based plane pose regression in obstetric ultrasound.基于深度学习的产科超声平面姿态回归。
Int J Comput Assist Radiol Surg. 2022 May;17(5):833-839. doi: 10.1007/s11548-022-02609-z. Epub 2022 Apr 30.
9
Sensorless reconstruction of freehand 3D ultrasound data.徒手三维超声数据的无传感器重建。
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):356-63. doi: 10.1007/11866763_44.

本文引用的文献

1
Long-term Dependency for 3D Reconstruction of Freehand Ultrasound Without External Tracker.
IEEE Trans Biomed Eng. 2023 Oct 19;PP. doi: 10.1109/TBME.2023.3325551.
4
Ultrasound Volume Reconstruction From Freehand Scans Without Tracking.无跟踪的自由手扫描超声体积重建。
IEEE Trans Biomed Eng. 2023 Mar;70(3):970-979. doi: 10.1109/TBME.2022.3206596. Epub 2023 Feb 17.
9
Temporal Segment Networks for Action Recognition in Videos.用于视频动作识别的时态片段网络
IEEE Trans Pattern Anal Mach Intell. 2019 Nov;41(11):2740-2755. doi: 10.1109/TPAMI.2018.2868668. Epub 2018 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验