Suppr超能文献

基于结构 MRI 图像构建的个体层次脑网络对精神分裂症的分类。

Classification of Schizophrenia Based on Individual Hierarchical Brain Networks Constructed From Structural MRI Images.

出版信息

IEEE Trans Nanobioscience. 2017 Oct;16(7):600-608. doi: 10.1109/TNB.2017.2751074. Epub 2017 Sep 11.

Abstract

With structural magnetic resonance imaging (MRI) images, conventional methods for the classification of schizophrenia (SCZ) and healthy control (HC) extract cortical thickness independently at different regions of interest (ROIs) without considering the correlation between these regions. In this paper, we proposed an improved method for the classification of SCZ and HC based on individual hierarchical brain networks constructed from structural MRI images. Our method involves constructing individual hierarchical networks where each node and each edge in these networks represents a ROI and the correlation between a pair of ROIs, respectively. We demonstrate that edge features make significant improvement in performance of SCZ/HC classification, when compared with only node features. Classification performance is further investigated by combining edge features with node features via a multiple kernel learning framework. The experimental results show that our proposed method achieves an accuracy of 88.72% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.9521 for SCZ/HC classification, which demonstrate that our proposed method is efficient and promising for clinical applications for the diagnosis of SCZ via structural MRI images. Therefore, this paper provides an alternative method for extracting high-order cortical thickness features from structural MRI images for classification of neurodegenerative diseases such as SCZ.

摘要

利用结构磁共振成像(MRI)图像,用于分类精神分裂症(SCZ)和健康对照(HC)的传统方法在不同的感兴趣区域(ROI)中分别提取皮质厚度,而不考虑这些区域之间的相关性。在本文中,我们提出了一种基于个体分层脑网络的结构 MRI 图像分类的改进方法。我们的方法涉及构建个体分层网络,其中这些网络中的每个节点和每条边分别代表一个 ROI 和一对 ROI 之间的相关性。我们证明与仅使用节点特征相比,边缘特征在 SCZ/HC 分类的性能方面有显著提高。通过多核学习框架,将边缘特征与节点特征相结合,进一步研究了分类性能。实验结果表明,我们提出的方法在 SCZ/HC 分类中达到了 88.72%的准确率和 0.9521 的接收器操作特性(ROC)曲线下面积(AUC),这表明我们提出的方法对于通过结构 MRI 图像诊断 SCZ 的临床应用是有效和有前途的。因此,本文提供了一种从结构 MRI 图像中提取高阶皮质厚度特征以分类神经退行性疾病(如 SCZ)的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验