Suppr超能文献

迈向基于大脑的精神疾病预测组学。

Towards a brain-based predictome of mental illness.

作者信息

Rashid Barnaly, Calhoun Vince

机构信息

Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

出版信息

Hum Brain Mapp. 2020 Aug 15;41(12):3468-3535. doi: 10.1002/hbm.25013. Epub 2020 May 6.

Abstract

Neuroimaging-based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for individualized prediction and characterization of patients with psychiatric disorders. Studies have utilized features from a variety of neuroimaging modalities, including structural, functional, and diffusion magnetic resonance imaging data, as well as jointly estimated features from multiple modalities, to assess patients with heterogeneous mental disorders, such as schizophrenia and autism. We use the term "predictome" to describe the use of multivariate brain network features from one or more neuroimaging modalities to predict mental illness. In the predictome, multiple brain network-based features (either from the same modality or multiple modalities) are incorporated into a predictive model to jointly estimate features that are unique to a disorder and predict subjects accordingly. To date, more than 650 studies have been published on subject-level prediction focusing on psychiatric disorders. We have surveyed about 250 studies including schizophrenia, major depression, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, social anxiety disorder, posttraumatic stress disorder, and substance dependence. In this review, we present a comprehensive review of recent neuroimaging-based predictomic approaches, current trends, and common shortcomings and share our vision for future directions.

摘要

近年来,基于神经影像学的方法已被广泛应用于精神疾病研究,加深了我们对认知健康和紊乱的大脑结构与功能的理解。机器学习技术的最新进展已显示出在精神疾病患者个体化预测和特征描述方面的良好前景。研究利用了多种神经影像学模态的特征,包括结构、功能和扩散磁共振成像数据,以及来自多种模态的联合估计特征,来评估患有精神分裂症和自闭症等异质性精神障碍的患者。我们使用“预测组学”一词来描述利用来自一种或多种神经影像学模态的多元脑网络特征来预测精神疾病。在预测组学中,多个基于脑网络的特征(来自同一模态或多种模态)被纳入预测模型,以联合估计一种疾病特有的特征并据此预测受试者。迄今为止,已发表了650多项关于以精神疾病为重点的个体水平预测的研究。我们调查了约250项研究,包括精神分裂症、重度抑郁症、双相情感障碍、自闭症谱系障碍、注意力缺陷多动障碍、强迫症、社交焦虑障碍、创伤后应激障碍和物质依赖。在本综述中,我们对最近基于神经影像学的预测组学方法、当前趋势和常见缺点进行了全面综述,并分享了我们对未来方向的展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/135f/7375108/6e36a377a466/HBM-41-3468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验