Suppr超能文献

使用多评分脑电图数据的自动新生儿癫痫发作检测的加权性能指标。

Weighted Performance Metrics for Automatic Neonatal Seizure Detection Using Multiscored EEG Data.

出版信息

IEEE J Biomed Health Inform. 2018 Jul;22(4):1114-1123. doi: 10.1109/JBHI.2017.2750769. Epub 2017 Sep 11.

Abstract

In neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled by experts is needed. However, accurately defining neonatal seizures on EEG is a challenge, especially when seizure discharges do not meet exact definitions of repetitiveness or evolution in amplitude and frequency. When several readers score seizures independently, disagreement can be high. Commonly used metrics such as good detection rate (GDR) and false alarm rate (FAR) derived from data scored by multiple raters have their limitations. Therefore, new metrics are needed to measure the performance with respect to the different labels. In this paper, instead of defining the labels by consensus or majority voting, popular metrics including GDR, FAR, positive predictive value, sensitivity, specificity, and selectivity are modified such that they can take different scores into account. To this end, 353 hours of EEG data containing seizures from 81 neonates were visually scored by a clinical neurophysiologist, and then processed by an automated seizure detector. The scored seizures were mixed with false detections of an automated seizure detector and were relabeled by three independent EEG readers. Then, all labels were used in the proposed performance metrics and the result was compared with the majority voting technique and showed higher accuracy and robustness for the proposed metrics. Results were confirmed using a bootstrapping test.

摘要

在新生儿重症监护病房,需要 24 小时不间断地监测脑电图(EEG),特别是用于识别癫痫发作。具有可接受性能的自动癫痫发作检测器可以部分满足这一需求。为了开发检测器,需要一个由专家标记的广泛数据集。然而,准确地在 EEG 上定义新生儿癫痫发作是一个挑战,特别是当癫痫发作放电不符合重复或幅度和频率演变的精确定义时。当几个读者独立地对癫痫发作进行评分时,可能存在很高的分歧。常用的指标,如良好的检测率(GDR)和假警报率(FAR),都是由多个评分者评分的数据得出的,这些指标存在局限性。因此,需要新的指标来衡量不同标签的性能。在本文中,我们不是通过共识或多数投票来定义标签,而是对包括 GDR、FAR、阳性预测值、灵敏度、特异性和选择性在内的常用指标进行了修改,以便考虑到不同的评分。为此,我们对 81 名新生儿的 353 小时包含癫痫发作的 EEG 数据进行了临床神经生理学家的视觉评分,然后由自动癫痫发作检测器进行处理。评分的癫痫发作与自动癫痫发作检测器的假检测混合在一起,并由三位独立的 EEG 读者重新标记。然后,将所有标签用于提出的性能指标中,并将结果与多数投票技术进行比较,结果表明,所提出的指标具有更高的准确性和鲁棒性。结果通过自举测试得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验