Suppr超能文献

CRISPR-Cas9 基因编辑系统的治疗应用传递策略。

Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.

机构信息

Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States.

Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States.

出版信息

J Control Release. 2017 Nov 28;266:17-26. doi: 10.1016/j.jconrel.2017.09.012. Epub 2017 Sep 11.

Abstract

The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.

摘要

CRISPR-Cas9 基因组编辑系统是古菌和细菌适应性免疫系统的一部分,用于防御噬菌体和质粒等入侵性核酸。该系统的单指导 RNA(sgRNA)识别其在基因组中的靶序列,而该系统的 Cas9 核酸酶则充当一对剪刀,切割 DNA 的双链。自发现以来,CRISPR-Cas9 已成为真核细胞基因组工程最强大的平台。最近,CRISPR-Cas9 系统在治疗应用方面引发了极大的兴趣。CRISPR-Cas9 可用于纠正致病基因突变或设计用于癌症免疫治疗的 T 细胞。首次使用 CRISPR-Cas9 技术的临床试验于 2016 年进行。尽管 CRISPR-Cas9 技术前景广阔,但在成功应用于人类患者之前,仍有一些挑战需要解决。最大的挑战是将 CRISPR-Cas9 基因组编辑系统安全有效地递送至人体靶细胞。在这篇综述中,我们将介绍使用 CRISPR-Cas9 系统编辑基因的分子机制和不同策略。然后,我们将重点介绍为了各种治疗目的而在体外和体内开发的用于递送 CRISPR-Cas9 的现有系统。

相似文献

1
Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
J Control Release. 2017 Nov 28;266:17-26. doi: 10.1016/j.jconrel.2017.09.012. Epub 2017 Sep 11.
2
CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
J Control Release. 2016 Dec 28;244(Pt B):139-148. doi: 10.1016/j.jconrel.2016.08.002. Epub 2016 Aug 4.
3
Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
Acta Biomater. 2019 May;90:60-70. doi: 10.1016/j.actbio.2019.04.020. Epub 2019 Apr 9.
4
Exploring the potential of genome editing CRISPR-Cas9 technology.
Gene. 2017 Jan 30;599:1-18. doi: 10.1016/j.gene.2016.11.008. Epub 2016 Nov 9.
5
CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
Chem Rev. 2017 Aug 9;117(15):9874-9906. doi: 10.1021/acs.chemrev.6b00799. Epub 2017 Jun 22.
6
The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy.
Brief Funct Genomics. 2019 Mar 22;18(2):129-132. doi: 10.1093/bfgp/ely011.
7
Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.
ACS Nano. 2017 Mar 28;11(3):2452-2458. doi: 10.1021/acsnano.6b07600. Epub 2017 Jan 31.
8
Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
Arch Toxicol. 2015 Jul;89(7):1023-34. doi: 10.1007/s00204-015-1504-y. Epub 2015 Apr 1.
9
CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review.
Protein Pept Lett. 2020;27(10):931-944. doi: 10.2174/0929866527666200407112432.
10
CRISPR/Cas9; A robust technology for producing genetically engineered plants.
Cell Mol Biol (Noisy-le-grand). 2018 Nov 30;64(14):31-38.

引用本文的文献

1
A novel Leishmania infantum reference strain for gene editing and the study of visceral leishmaniasis.
PLoS One. 2025 Sep 3;20(9):e0327390. doi: 10.1371/journal.pone.0327390. eCollection 2025.
3
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
4
5
CloneFast: A simple plasmid design and construction guide for labs venturing into synthetic biology.
STAR Protoc. 2025 Aug 6;6(3):104025. doi: 10.1016/j.xpro.2025.104025.
6
Lipid nanoparticles: a promising tool for nucleic acid delivery in cancer immunotherapy.
Med Oncol. 2025 Aug 6;42(9):409. doi: 10.1007/s12032-025-02939-3.
7
Applications of CRISPR-Cas-Based Genome Editing Approaches Against Human Cytomegalovirus Infection.
Biomedicines. 2025 Jun 30;13(7):1590. doi: 10.3390/biomedicines13071590.
8
ENHANCED CLEAVAGE OF GENOMIC USING CASX2.
bioRxiv. 2025 Jul 11:2025.07.08.663680. doi: 10.1101/2025.07.08.663680.
9
Engineering ARMMs for improved intracellular delivery of CRISPR-Cas9.
Extracell Vesicle. 2025 Jun;5. doi: 10.1016/j.vesic.2025.100082. Epub 2025 May 9.
10
Design principle of successful genome editing applications using CRISPR-based toolkits.
J Appl Genet. 2025 Jul 1. doi: 10.1007/s13353-025-00979-z.

本文引用的文献

2
Ethical issues of CRISPR technology and gene editing through the lens of solidarity.
Br Med Bull. 2017 Jun 1;122(1):17-29. doi: 10.1093/bmb/ldx002.
3
In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.
Bioconjug Chem. 2017 Apr 19;28(4):880-884. doi: 10.1021/acs.bioconjchem.7b00057. Epub 2017 Mar 17.
4
Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance.
Bioconjug Chem. 2017 Apr 19;28(4):957-967. doi: 10.1021/acs.bioconjchem.6b00676. Epub 2017 Feb 27.
5
Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.
ACS Nano. 2017 Mar 28;11(3):2452-2458. doi: 10.1021/acsnano.6b07600. Epub 2017 Jan 31.
6
CRISPR gene-editing tested in a person for the first time.
Nature. 2016 Nov 24;539(7630):479. doi: 10.1038/nature.2016.20988.
7
Cell-Penetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing.
Methods Mol Biol. 2017;1507:81-94. doi: 10.1007/978-1-4939-6518-2_7.
8
The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops.
Front Plant Sci. 2016 Apr 19;7:506. doi: 10.3389/fpls.2016.00506. eCollection 2016.
9
CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses.
Viruses. 2016 Mar 7;8(3):72. doi: 10.3390/v8030072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验