Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Science. 2017 Sep 15;357(6356):1126-1130. doi: 10.1126/science.aan3925.
Shape-changing hydrogels that can bend, twist, or actuate in response to external stimuli are critical to soft robots, programmable matter, and smart medicine. Shape change in hydrogels has been induced by global cues, including temperature, light, or pH. Here we demonstrate that specific DNA molecules can induce 100-fold volumetric hydrogel expansion by successive extension of cross-links. We photopattern up to centimeter-sized gels containing multiple domains that undergo different shape changes in response to different DNA sequences. Experiments and simulations suggest a simple design rule for controlled shape change. Because DNA molecules can be coupled to molecular sensors, amplifiers, and logic circuits, this strategy introduces the possibility of building soft devices that respond to diverse biochemical inputs and autonomously implement chemical control programs.
形状可变形的水凝胶能够对外界刺激做出弯曲、扭曲或驱动响应,对于软机器人、可编程物质和智能医学至关重要。水凝胶的形状变化已经通过全局刺激来诱导,包括温度、光或 pH 值。在这里,我们证明特定的 DNA 分子可以通过连续扩展交联来引起 100 倍的体积水凝胶膨胀。我们通过光图案化制作了包含多个域的长达厘米大小的凝胶,这些域会根据不同的 DNA 序列发生不同的形状变化。实验和模拟表明了一种用于控制形状变化的简单设计规则。由于 DNA 分子可以与分子传感器、放大器和逻辑电路结合,因此这种策略引入了构建可以响应各种生化输入并自主实施化学控制程序的软设备的可能性。