Falk Martin J, Strupp Adam T, Scellier Benjamin, Murugan Arvind
Department of Physics, University of Chicago, Chicago, IL, USA.
Rain AI, San Francisco, IL, USA.
Nat Commun. 2025 Mar 4;16(1):2163. doi: 10.1038/s41467-025-57043-x.
The backpropagation method has enabled transformative uses of neural networks. Alternatively, for energy-based models, local learning methods involving only nearby neurons offer benefits in terms of decentralized training, and allow for the possibility of learning in computationally-constrained substrates. One class of local learning methods contrasts the desired, clamped behavior with spontaneous, free behavior. However, directly contrasting free and clamped behaviors requires explicit memory. Here, we introduce 'Temporal Contrastive Learning', an approach that uses integral feedback in each learning degree of freedom to provide a simple form of implicit non-equilibrium memory. During training, free and clamped behaviors are shown in a sawtooth-like protocol over time. When combined with integral feedback dynamics, these alternating temporal protocols generate an implicit memory necessary for comparing free and clamped behaviors, broadening the range of physical and biological systems capable of contrastive learning. Finally, we show that non-equilibrium dissipation improves learning quality and determine a Landauer-like energy cost of contrastive learning through physical dynamics.
反向传播方法使神经网络有了变革性的应用。另外,对于基于能量的模型,仅涉及附近神经元的局部学习方法在分散训练方面具有优势,并允许在计算受限的基质中进行学习。一类局部学习方法将期望的、钳制的行为与自发的、自由的行为进行对比。然而,直接对比自由行为和钳制行为需要显式记忆。在这里,我们引入“时间对比学习”,一种在每个学习自由度中使用积分反馈来提供简单形式的隐式非平衡记忆的方法。在训练期间,自由行为和钳制行为会随着时间以锯齿状协议呈现。当与积分反馈动力学相结合时,这些交替的时间协议会生成比较自由行为和钳制行为所需的隐式记忆,拓宽了能够进行对比学习的物理和生物系统的范围。最后,我们表明非平衡耗散提高了学习质量,并通过物理动力学确定了对比学习类似兰道尔的能量成本。