Suppr超能文献

细胞壁磷壁酸的结构与功能多样性。

Structural and functional diversity in cell wall teichoic acids.

作者信息

Shen Yang, Boulos Samy, Sumrall Eric, Gerber Benjamin, Julian-Rodero Alicia, Eugster Marcel R, Fieseler Lars, Nyström Laura, Ebert Marc-Olivier, Loessner Martin J

机构信息

From the Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, CH-8092 Zurich,

the Laboratory of Food Biochemistry, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zurich.

出版信息

J Biol Chem. 2017 Oct 27;292(43):17832-17844. doi: 10.1074/jbc.M117.813964. Epub 2017 Sep 14.

Abstract

Wall teichoic acids (WTAs) are the most abundant glycopolymers found on the cell wall of many Gram-positive bacteria, whose diverse surface structures play key roles in multiple biological processes. Despite recent technological advances in glycan analysis, structural elucidation of WTAs remains challenging due to their complex nature. Here, we employed a combination of ultra-performance liquid chromatography-coupled electrospray ionization tandem-MS/MS and NMR to determine the structural complexity of WTAs from species. We unveiled more than 10 different types of WTA polymers that vary in their linkage and repeating units. Disparity in GlcNAc to ribitol connectivity, as well as variable -acetylation and glycosylation of GlcNAc contribute to the structural diversity of WTAs. Notably, SPR analysis indicated that constitution of WTA determines the recognition by bacteriophage endolysins. Collectively, these findings provide detailed insight into cell wall-associated carbohydrates, and will guide further studies on the structure-function relationship of WTAs.

摘要

壁磷壁酸(WTAs)是许多革兰氏阳性细菌细胞壁上含量最丰富的糖聚合物,其多样的表面结构在多种生物学过程中发挥关键作用。尽管近年来聚糖分析技术取得了进展,但由于WTAs的性质复杂,其结构解析仍然具有挑战性。在这里,我们采用超高效液相色谱-电喷雾电离串联质谱/质谱和核磁共振相结合的方法来确定来自不同物种的WTAs的结构复杂性。我们揭示了10多种不同类型的WTA聚合物,它们在连接方式和重复单元上有所不同。GlcNAc与核糖醇连接的差异,以及GlcNAc可变的乙酰化和糖基化导致了WTAs的结构多样性。值得注意 的是,表面等离子体共振(SPR)分析表明,WTA的组成决定了噬菌体溶菌酶的识别。总的来说,这些发现为细胞壁相关碳水化合物提供了详细的见解,并将指导对WTAs结构-功能关系的进一步研究。

相似文献

1
Structural and functional diversity in cell wall teichoic acids.
J Biol Chem. 2017 Oct 27;292(43):17832-17844. doi: 10.1074/jbc.M117.813964. Epub 2017 Sep 14.
3
The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid.
Mol Microbiol. 2011 Sep;81(6):1419-32. doi: 10.1111/j.1365-2958.2011.07774.x. Epub 2011 Aug 2.
5
Structure and function of Listeria teichoic acids and their implications.
Mol Microbiol. 2020 Mar;113(3):627-637. doi: 10.1111/mmi.14472.
6
Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS.
PLoS One. 2011;6(6):e21500. doi: 10.1371/journal.pone.0021500. Epub 2011 Jun 30.
7
Characterisation of a new cell wall teichoic acid produced by Listeria innocua ŽM39 and analysis of its biosynthesis genes.
Carbohydr Res. 2022 Jan;511:108499. doi: 10.1016/j.carres.2021.108499. Epub 2021 Dec 31.
9
(Automated) Synthesis of Well-defined Staphylococcus Aureus Wall Teichoic Acid Fragments.
Chemistry. 2021 Jul 16;27(40):10461-10469. doi: 10.1002/chem.202101242. Epub 2021 Jun 9.

引用本文的文献

1
Multi-omics characterization of a lytic phage targeting .
mSystems. 2025 Jun 25:e0058725. doi: 10.1128/msystems.00587-25.
2
A Novel Sero-Specific-Gene Dependent Multiplex PCR Enhances the Discrimination of Major Serovars.
J Microbiol Biotechnol. 2025 Mar 7;35:e2411081. doi: 10.4014/jmb.2411.11081.
4
Deletion of glycosyltransferase impairs the InlB anchoring and pathogenicity of .
Virulence. 2024 Dec;15(1):2422539. doi: 10.1080/21505594.2024.2422539. Epub 2024 Nov 4.
5
Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria.
Nat Commun. 2024 Oct 2;15(1):8499. doi: 10.1038/s41467-024-52633-7.
6
Synergistic removal of biofilms by using a combination of phage with the exopolysaccharide depolymerase Dpo7.
Front Microbiol. 2024 Aug 7;15:1438022. doi: 10.3389/fmicb.2024.1438022. eCollection 2024.
7
Degradation of biofilm by phages belonging to the genus .
Appl Environ Microbiol. 2024 Mar 20;90(3):e0106223. doi: 10.1128/aem.01062-23. Epub 2024 Feb 5.
8
9
Imbalance of peptidoglycan biosynthesis alters the cell surface charge of .
Cell Surf. 2022 Oct 20;8:100085. doi: 10.1016/j.tcsw.2022.100085. eCollection 2022 Dec.
10
Analysis of Derivatized Wall Teichoic Acids Confirms that a Mutation in Phage-Resistant Impacts Rhamnose Decoration.
ACS Omega. 2022 May 11;7(20):17002-17013. doi: 10.1021/acsomega.1c07403. eCollection 2022 May 24.

本文引用的文献

1
Wall teichoic acids mediate increased virulence in Staphylococcus aureus.
Nat Microbiol. 2017 Jan 23;2:16257. doi: 10.1038/nmicrobiol.2016.257.
3
Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009.
Appl Microbiol Biotechnol. 2016 Jun;100(12):5273-87. doi: 10.1007/s00253-016-7552-2. Epub 2016 Apr 29.
4
Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread.
Mol Microbiol. 2016 Sep;101(5):714-30. doi: 10.1111/mmi.13353. Epub 2016 Mar 10.
5
Wall Teichoic Acid Glycosylation Governs Staphylococcus aureus Nasal Colonization.
mBio. 2015 Jun 30;6(4):e00632. doi: 10.1128/mBio.00632-15.
7
Bacteriophage predation promotes serovar diversification in Listeria monocytogenes.
Mol Microbiol. 2015 Jul;97(1):33-46. doi: 10.1111/mmi.13009. Epub 2015 Apr 24.
8
Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids.
Virology. 2015 Mar;477:110-118. doi: 10.1016/j.virol.2014.12.035. Epub 2015 Feb 21.
9
Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase.
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):E576-85. doi: 10.1073/pnas.1418084112. Epub 2015 Jan 26.
10
Phages of Listeria offer novel tools for diagnostics and biocontrol.
Front Microbiol. 2014 Apr 10;5:159. doi: 10.3389/fmicb.2014.00159. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验