文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳层隔离纳米颗粒用于增强锂-氧电池中的拉曼光谱研究。

Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells.

机构信息

Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, L69 7ZF, UK.

出版信息

Faraday Discuss. 2017 Dec 4;205:469-490. doi: 10.1039/c7fd00151g.


DOI:10.1039/c7fd00151g
PMID:28913534
Abstract

A critical and detailed assessment of using Shell Isolated Nanoparticles for Enhanced Raman Spectroscopy (SHINERS) on different electrode substrates was carried out, providing relative enhancement factors, as well as an evaluation of the distribution of shell-isolated nanoparticles upon the electrode surfaces. The chemical makeup of surface layers formed upon lithium metal electrodes and the mechanism of the oxygen reduction reaction on carbon substrates relevant to lithium-oxygen cells are studied with the employment of the SHINERS technique. SHINERS enhanced the Raman signal at these surfaces showing a predominant LiO based layer on lithium metal in a variety of electrolytes. The formation of LiO and LiO, as well as degradation reactions forming LiCO, upon planar carbon electrode interfaces and upon composite carbon black electrodes were followed under potential control during the reduction of oxygen in a non-aqueous electrolyte based on dimethyl sulfoxide.

摘要

对不同电极基底上使用壳层隔绝纳米粒子增强拉曼光谱(SHINERS)进行了关键而详细的评估,提供了相对增强因子,以及对电极表面上壳层隔绝纳米粒子分布的评估。使用 SHINERS 技术研究了在锂金属电极上形成的表面层的化学组成以及与锂氧电池相关的碳基底上氧还原反应的机理。SHINERS 增强了这些表面的拉曼信号,在各种电解质中显示出锂金属上基于 LiO 的主要层。在基于二甲基亚砜的非水电解质中,在氧还原过程中,通过电位控制,在平面碳电极界面和复合碳黑电极上,跟踪了 LiO 和 LiO 的形成,以及形成 LiCO 的降解反应。

相似文献

[1]
Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells.

Faraday Discuss. 2017-12-4

[2]
Utilizing in Situ Electrochemical SHINERS for Oxygen Reduction Reaction Studies in Aprotic Electrolytes.

J Phys Chem Lett. 2016-6-2

[3]
Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes.

ACS Nano. 2011-6-15

[4]
Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells.

Phys Chem Chem Phys. 2013-6-10

[5]
Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering.

Phys Chem Chem Phys. 2012-4-20

[6]
Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

Analyst. 2016-3-22

[7]
Molybdenum nitride/N-doped carbon nanospheres for lithium-O₂ battery cathode electrocatalyst.

ACS Appl Mater Interfaces. 2013-4-16

[8]
Ordered mesoporous carbon electrodes for Li-O2 batteries.

ACS Appl Mater Interfaces. 2013-11-21

[9]
A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium-oxygen batteries.

Nanoscale. 2013-4-11

[10]
Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes.

J Phys Chem B. 2005-11-24

引用本文的文献

[1]
White Light Transmission Spectroscopy for Rapid Quality Control Imperfection Identification in Nanoimprinted Surface-Enhanced Raman Spectroscopy Substrates.

ACS Meas Sci Au. 2025-3-1

[2]
Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

ACS Nano. 2024-10-29

[3]
Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy.

Nat Commun. 2023-6-15

[4]
Long-Life and pH-Stable SnO-Coated Au Nanoparticles for SHINERS.

J Phys Chem C Nanomater Interfaces. 2022-7-28

[5]
Direct Observation of Double Layer Charging and Early Solid Electrolyte Interphase Formation in Li-Ion Battery Electrolytes.

J Phys Chem Lett. 2020-5-21

[6]
Oxygen reactions on Pt{} in a non-aqueous Na electrolyte: site selective stabilisation of a sodium peroxy species.

Chem Sci. 2019-1-17

[7]
Nanotechnology: a promising method for oral cancer detection and diagnosis.

J Nanobiotechnology. 2018-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索