Suppr超能文献

IF2 和起始 tRNA 的独特特征有助于建立翻译阅读框。

IF2 and unique features of initiator tRNA help establish the translational reading frame.

机构信息

a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA.

出版信息

RNA Biol. 2018;15(4-5):604-613. doi: 10.1080/15476286.2017.1379636. Epub 2017 Nov 13.

Abstract

Translation begins at AUG, GUG, or UUG codons in bacteria. Start codon recognition occurs in the P site, which may help explain this first-position degeneracy. However, the molecular basis of start codon specificity remains unclear. In this study, we measured the codon dependence of 30S•mRNA•tRNA and 30S•mRNA•tRNA complex formation. We found that complex stability varies over a large range with initiator tRNA, following the same trend as reported previously for initiation rate in vivo (AUG > GUG, UUG > CUG, AUC, AUA > ACG). With elongator tRNA, the codon dependence of binding differs qualitatively, with virtually no discrimination between GUG and CUG. A unique feature of initiator tRNA is a series of three G-C basepairs in the anticodon stem, which are known to be important for efficient initiation in vivo. A mutation targeting the central of these G-C basepairs causes the mRNA binding specificity pattern to change in a way reminiscent of elongator tRNA. Unexpectedly, for certain complexes containing fMet-tRNA, we observed mispositioning of mRNA, such that codon 2 is no longer programmed in the A site. This mRNA mispositioning is exacerbated by the anticodon stem mutation and suppressed by IF2. These findings suggest that both IF2 and the unique anticodon stem of fMet-tRNA help constrain mRNA positioning to set the correct reading frame during initiation.

摘要

翻译起始于细菌中的 AUG、GUG 或 UUG 密码子。起始密码子识别发生在 P 位,这可能有助于解释这种第一位简并性。然而,起始密码子特异性的分子基础仍不清楚。在这项研究中,我们测量了 30S•mRNA•tRNA 和 30S•mRNA•tRNA 复合物形成的密码子依赖性。我们发现,复合物稳定性随着起始 tRNA 的变化而在很大范围内变化,与体内起始速率的报道趋势相同(AUG > GUG、UUG > CUG、AUC、AUA > ACG)。对于延伸因子 tRNA,结合的密码子依赖性在性质上有所不同,几乎没有区分 GUG 和 CUG。起始 tRNA 的一个独特特征是反密码子茎中的三个 G-C 碱基对,这些碱基对对于体内的有效起始至关重要。针对这些 G-C 碱基对中心的突变导致 mRNA 结合特异性模式发生变化,类似于延伸因子 tRNA。出乎意料的是,对于某些包含 fMet-tRNA 的复合物,我们观察到 mRNA 的错位,使得密码子 2不再在 A 位编程。这种 mRNA 错位在反密码子茎突变的情况下会加剧,并被 IF2 抑制。这些发现表明,IF2 和 fMet-tRNA 的独特反密码子茎都有助于在起始过程中限制 mRNA 定位以设置正确的阅读框。

相似文献

3
Structure of the 30S translation initiation complex.30S翻译起始复合物的结构。
Nature. 2008 Sep 18;455(7211):416-20. doi: 10.1038/nature07192. Epub 2008 Aug 31.

引用本文的文献

2
Tuning tRNAs for improved translation.优化转运RNA以改善翻译过程。
Front Genet. 2024 Jun 25;15:1436860. doi: 10.3389/fgene.2024.1436860. eCollection 2024.
5
The Structural Dynamics of Translation.翻译的结构动力学。
Annu Rev Biochem. 2022 Jun 21;91:245-267. doi: 10.1146/annurev-biochem-071921-122857. Epub 2022 Mar 14.
6
The dynamic cycle of bacterial translation initiation factor IF3.细菌翻译起始因子IF3的动态循环
Nucleic Acids Res. 2021 Jul 9;49(12):6958-6970. doi: 10.1093/nar/gkab522.
8
Understanding the Genetic Code.理解遗传密码。
J Bacteriol. 2019 Jul 10;201(15). doi: 10.1128/JB.00091-19. Print 2019 Aug 1.
9
Transfer RNA function and evolution.转运RNA的功能与进化。
RNA Biol. 2018;15(4-5):423-426. doi: 10.1080/15476286.2018.1478942.

本文引用的文献

2
Roles of helix H69 of 23S rRNA in translation initiation.23S核糖体RNA的H69螺旋在翻译起始中的作用。
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11559-64. doi: 10.1073/pnas.1507703112. Epub 2015 Aug 31.
10
Kinetic control of translation initiation in bacteria.细菌中转译起始的动力学控制。
Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):334-48. doi: 10.3109/10409238.2012.678284. Epub 2012 Apr 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验