Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States.
Department of Biological Sciences, Wright State University, Dayton, United States.
Elife. 2017 Sep 15;6:e30005. doi: 10.7554/eLife.30005.
Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal.
神经系统利用自身稳态来维持正常的大脑功能并防止异常活动。令人惊讶的是,调节回路输出的自身稳态机制主要在人为和/或病理性干扰期间得到证实。在成熟动物的神经网络中,激活这些稳定机制的自然生理场景仍然难以捉摸。为了确定在多大程度上自然不活跃的回路采用自身稳态可塑性的机制,我们利用了牛蛙的呼吸运动回路,在冬季的几个月中,该回路通常保持不活跃。我们发现不活跃的呼吸运动神经元表现出一种经典形式的自身稳态可塑性,即 AMPA-谷氨酸受体的上调。上调增加了呼吸运动神经元的突触强度,并在数月的不活动后作用于呼吸网络,从而提高了运动幅度。我们的研究结果表明,突触缩放在数月的不活动后维持呼吸运动输出的强度,从而在正常的成年动物背景下支持了一个主要的神经科学假说。