Suppr超能文献

机器学习:用于对抗抗菌药物耐药性的新型生物信息学方法。

Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

机构信息

aDivision of Infectious Diseases, Columbia University Medical Center bDepartment of Biomedical Informatics, Columbia University, New York City, New York, USA cDepartment of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.

出版信息

Curr Opin Infect Dis. 2017 Dec;30(6):511-517. doi: 10.1097/QCO.0000000000000406.

Abstract

PURPOSE OF REVIEW

Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR.

RECENT FINDINGS

The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization.

SUMMARY

Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

摘要

目的综述:抗菌药物耐药性(AMR)对全球健康构成威胁,需要寻找新的方法来对抗 AMR。机器学习在对抗 AMR 方面尚处于起步阶段,但已经取得了有希望的进展。我们综述了目前关于使用机器学习研究细菌 AMR 的文献。

最近的发现:新一代测序和电子健康记录提供的大规模数据集的出现使得将机器学习应用于 AMR 的研究和治疗成为可能。迄今为止,它已被用于抗菌药物药敏基因型/表型预测、AMR 临床决策规则的制定、新型抗菌药物的发现和抗菌药物治疗的优化。

总结:将机器学习应用于 AMR 的研究是可行的,但仍然有限。机器学习在临床环境中的应用面临着采用的障碍,人们对模型的可解释性和数据质量存在担忧。机器学习在 AMR 中的未来应用可能是基于实验室的,例如抗菌药物药敏表型预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验