Suppr超能文献

使用机器学习算法预测抗菌药物耐药性并辅助经验性治疗。

Using Machine Learning Algorithms to Predict Antimicrobial Resistance and Assist Empirical Treatment.

作者信息

Feretzakis Georgios, Loupelis Evangelos, Sakagianni Aikaterini, Kalles Dimitris, Lada Malvina, Christopoulos Constantinos, Dimitrellos Evangelos, Martsoukou Maria, Skarmoutsou Nikoleta, Petropoulou Stavroula, Alexiou Konstantinos, Velentza Aikaterini, Michelidou Sophia, Valakis Konstantinos

机构信息

School of Science and Technology, Hellenic Open University, Patras, Greece.

Sismanogleio General Hospital, IT department, Marousi, Greece.

出版信息

Stud Health Technol Inform. 2020 Jun 26;272:75-78. doi: 10.3233/SHTI200497.

Abstract

Multi-drug-resistant (MDR) infections and their devastating consequences constitute a global problem and a constant threat to public health with immense costs for their treatment. Early identification of the pathogen and its antibiotic resistance profile is crucial for a favorable outcome. Given the fact that more than 24 hours are usually required to perform common antibiotic resistance tests after the sample collection, the implementation of machine learning methods could be of significant help in selecting empirical antibiotic treatment based only on the sample type, Gram stain, and patient's basic characteristics. In this paper, five machine learning (ML) algorithms have been tested to determine antibiotic susceptibility predictions using simple demographic data of the patients, as well as culture results and antibiotic susceptibility tests. Implementing ML algorithms to antimicrobial susceptibility data may offer insightful antibiotic susceptibility predictions to assist clinicians in decision-making regarding empirical treatment.

摘要

多重耐药(MDR)感染及其造成的破坏性后果构成了一个全球性问题,对公共卫生构成持续威胁,其治疗成本巨大。尽早识别病原体及其抗生素耐药谱对于取得良好治疗效果至关重要。鉴于样本采集后通常需要24小时以上才能完成常规抗生素耐药性检测,机器学习方法的应用在仅根据样本类型、革兰氏染色和患者基本特征选择经验性抗生素治疗方面可能会有很大帮助。本文测试了五种机器学习(ML)算法,以利用患者的简单人口统计学数据以及培养结果和抗生素敏感性测试来确定抗生素敏感性预测。将ML算法应用于抗菌药物敏感性数据可能会提供有见地的抗生素敏感性预测,以协助临床医生进行经验性治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验