Suppr超能文献

探索人工智能在重症监护病房脓毒症管理中的潜力。

Exploring the Potentials of Artificial Intelligence in Sepsis Management in the Intensive Care Unit.

作者信息

Riahi Ali, Yazdani Mohammad Sepehr, Eshraghi Reza, Houyeh Motahare Karimi, Bahrami Ashkan, Khoshdooz Sara, Amini Mahshid, Behzadi Ehsan, Khalaji Amirreza, Moeini Taba Seyed Masoud, Hashemian Seyed Mohammad Reza

机构信息

School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.

出版信息

Crit Care Res Pract. 2025 Aug 28;2025:9031137. doi: 10.1155/ccrp/9031137. eCollection 2025.

Abstract

Sepsis remains one of the leading causes of morbidity and mortality worldwide, particularly among critically ill patients in intensive care units (ICUs). Traditional diagnostic approaches, such as the Sequential Organ Failure Assessment (SOFA) and systemic inflammatory response syndrome (SIRS) criteria, often detect sepsis after significant organ dysfunction has occurred, limiting the potential for early intervention. In this study, we reviewed how artificial intelligence (AI)-driven methodologies, including machine learning (ML), deep learning (DL), and natural language processing (NLP), can aid physicians. AI, in this case, particularly ML, processes massive amounts of real-time clinical data, vital signs, lab results, and patient history and can detect subtle patterns and predict sepsis earlier than traditional methods like SOFA or SIRS, which often lag behind after the presentation of the sequela. Models like random forest, XGBoost, and neural networks achieve high accuracy and area under the receiver operating characteristic curve (AUROC) scores (0.8-0.99) in ICU and emergency settings, enabling timely intervention by distinguishing sepsis from similar conditions despite the lack of perfect biomarkers. In practice, however, there are several potential pitfalls. Algorithmic bias due to nonrepresentative data, data fragmentation, lack of validation, and explainability issues are current barriers in developed models. Future research should address these limitations and develop more sophisticated models.

摘要

脓毒症仍然是全球发病和死亡的主要原因之一,在重症监护病房(ICU)的重症患者中尤为突出。传统的诊断方法,如序贯器官衰竭评估(SOFA)和全身炎症反应综合征(SIRS)标准,往往在器官出现明显功能障碍后才检测到脓毒症,限制了早期干预的可能性。在本研究中,我们回顾了人工智能(AI)驱动的方法,包括机器学习(ML)、深度学习(DL)和自然语言处理(NLP),如何辅助医生。在这种情况下,AI,特别是ML,能够处理大量实时临床数据、生命体征、实验室结果和患者病史,并且能够比SOFA或SIRS等传统方法更早地检测到细微模式并预测脓毒症,而传统方法在出现后遗症后往往滞后。随机森林、XGBoost和神经网络等模型在ICU和急诊环境中实现了较高的准确性和受试者工作特征曲线下面积(AUROC)评分(0.8 - 0.99),尽管缺乏完美的生物标志物,但仍能通过区分脓毒症与类似病症来实现及时干预。然而,在实际应用中,存在一些潜在的陷阱。由于数据缺乏代表性、数据碎片化、缺乏验证以及可解释性问题导致的算法偏差是当前已开发模型的障碍。未来的研究应解决这些局限性,并开发更复杂的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf9/12411037/c1c08349249d/CCRP2025-9031137.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验